1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15* 16* 17* Acknowledgement 18* 19* This implementation is inspired by several key papers: 20* [1] James E. Smith, and Andrew R. Pleszkun. "[Implementation of precise interrupts in pipelined processors.] 21* (https://dl.acm.org/doi/10.5555/327010.327125)" 12th Annual International Symposium on Computer Architecture (ISCA). 22* 1985. 23***************************************************************************************/ 24 25package xiangshan.backend.rob 26 27import org.chipsalliance.cde.config.Parameters 28import chisel3._ 29import chisel3.util._ 30import chisel3.experimental.BundleLiterals._ 31import difftest._ 32import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 33import utility._ 34import utils._ 35import xiangshan._ 36import xiangshan.backend.GPAMemEntry 37import xiangshan.backend.{BackendParams, RatToVecExcpMod, RegWriteFromRab, VecExcpInfo} 38import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 39import xiangshan.backend.decode.isa.bitfield.XSInstBitFields 40import xiangshan.backend.fu.{FuConfig, FuType} 41import xiangshan.frontend.FtqPtr 42import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 43import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 44import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 45import xiangshan.backend.fu.vector.Bundles.VType 46import xiangshan.backend.rename.SnapshotGenerator 47import yunsuan.VfaluType 48import xiangshan.backend.rob.RobBundles._ 49import xiangshan.backend.trace._ 50import chisel3.experimental.BundleLiterals._ 51 52class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 53 override def shouldBeInlined: Boolean = false 54 55 lazy val module = new RobImp(this)(p, params) 56} 57 58class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 59 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents with HasCriticalErrors { 60 61 private val LduCnt = params.LduCnt 62 private val StaCnt = params.StaCnt 63 private val HyuCnt = params.HyuCnt 64 65 val io = IO(new Bundle() { 66 val hartId = Input(UInt(hartIdLen.W)) 67 val redirect = Input(Valid(new Redirect)) 68 val enq = new RobEnqIO 69 val flushOut = ValidIO(new Redirect) 70 val exception = ValidIO(new ExceptionInfo) 71 // exu + brq 72 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 73 val exuWriteback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 74 val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 75 val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool())) 76 val commits = Output(new RobCommitIO) 77 val trace = new Bundle { 78 val blockCommit = Input(Bool()) 79 val traceCommitInfo = new TraceBundle(hasIaddr = false, CommitWidth, IretireWidthInPipe) 80 } 81 val rabCommits = Output(new RabCommitIO) 82 val diffCommits = if (backendParams.basicDebugEn) Some(Output(new DiffCommitIO)) else None 83 val isVsetFlushPipe = Output(Bool()) 84 val lsq = new RobLsqIO 85 val robDeqPtr = Output(new RobPtr) 86 val csr = new RobCSRIO 87 val snpt = Input(new SnapshotPort) 88 val robFull = Output(Bool()) 89 val headNotReady = Output(Bool()) 90 val cpu_halt = Output(Bool()) 91 val wfi_enable = Input(Bool()) 92 val toDecode = new Bundle { 93 val isResumeVType = Output(Bool()) 94 val walkToArchVType = Output(Bool()) 95 val walkVType = ValidIO(VType()) 96 val commitVType = new Bundle { 97 val vtype = ValidIO(VType()) 98 val hasVsetvl = Output(Bool()) 99 } 100 } 101 val fromVecExcpMod = Input(new Bundle { 102 val busy = Bool() 103 }) 104 val readGPAMemAddr = ValidIO(new Bundle { 105 val ftqPtr = new FtqPtr() 106 val ftqOffset = UInt(log2Up(PredictWidth).W) 107 }) 108 val readGPAMemData = Input(new GPAMemEntry) 109 val vstartIsZero = Input(Bool()) 110 111 val toVecExcpMod = Output(new Bundle { 112 val logicPhyRegMap = Vec(RabCommitWidth, ValidIO(new RegWriteFromRab)) 113 val excpInfo = ValidIO(new VecExcpInfo) 114 }) 115 val debug_ls = Flipped(new DebugLSIO) 116 val debugRobHead = Output(new DynInst) 117 val debugEnqLsq = Input(new LsqEnqIO) 118 val debugHeadLsIssue = Input(Bool()) 119 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 120 val debugTopDown = new Bundle { 121 val toCore = new RobCoreTopDownIO 122 val toDispatch = new RobDispatchTopDownIO 123 val robHeadLqIdx = Valid(new LqPtr) 124 } 125 val debugRolling = new RobDebugRollingIO 126 127 // store event difftest information 128 val storeDebugInfo = Vec(EnsbufferWidth, new Bundle { 129 val robidx = Input(new RobPtr) 130 val pc = Output(UInt(VAddrBits.W)) 131 }) 132 }) 133 134 val exuWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(!_.bits.params.hasStdFu).toSeq 135 val stdWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasStdFu).toSeq 136 val vldWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasVLoadFu).toSeq 137 val fflagsWBs = io.exuWriteback.filter(x => x.bits.fflags.nonEmpty).toSeq 138 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty).toSeq 139 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty).toSeq 140 val vxsatWBs = io.exuWriteback.filter(x => x.bits.vxsat.nonEmpty).toSeq 141 val branchWBs = io.exuWriteback.filter(_.bits.params.hasBrhFu).toSeq 142 val jmpWBs = io.exuWriteback.filter(_.bits.params.hasJmpFu).toSeq 143 val csrWBs = io.exuWriteback.filter(x => x.bits.params.hasCSR).toSeq 144 145 PerfCCT.tick(clock, reset) 146 147 io.exuWriteback.zipWithIndex.foreach{ case (wb, i) => 148 PerfCCT.updateInstPos(wb.bits.debug_seqNum, PerfCCT.InstPos.AtWriteVal.id.U, wb.valid, clock, reset) 149 } 150 151 val numExuWbPorts = exuWBs.length 152 val numStdWbPorts = stdWBs.length 153 val bankAddrWidth = log2Up(CommitWidth) 154 155 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 156 157 val rab = Module(new RenameBuffer(RabSize)) 158 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 159 val bankNum = 8 160 assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0") 161 val robEntries = RegInit(VecInit.fill(RobSize)((new RobEntryBundle).Lit(_.valid -> false.B))) 162 // pointers 163 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 164 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 165 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 166 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 167 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 168 val walkPtrTrue = Reg(new RobPtr) 169 val lastWalkPtr = Reg(new RobPtr) 170 val allowEnqueue = RegInit(true.B) 171 val allowEnqueueForDispatch = RegInit(true.B) 172 val vecExcpInfo = RegInit(ValidIO(new VecExcpInfo).Lit( 173 _.valid -> false.B, 174 )) 175 176 /** 177 * Enqueue (from dispatch) 178 */ 179 // special cases 180 val hasBlockBackward = RegInit(false.B) 181 val hasWaitForward = RegInit(false.B) 182 val doingSvinval = RegInit(false.B) 183 val enqPtr = enqPtrVec(0) 184 val deqPtr = deqPtrVec(0) 185 val walkPtr = walkPtrVec(0) 186 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 187 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq && !io.fromVecExcpMod.busy 188 io.enq.canAcceptForDispatch := allowEnqueueForDispatch && !hasBlockBackward && rab.io.canEnqForDispatch && vtypeBuffer.io.canEnqForDispatch && !io.fromVecExcpMod.busy 189 io.enq.resp := allocatePtrVec 190 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 191 val timer = GTimer() 192 // robEntries enqueue 193 for (i <- 0 until RobSize) { 194 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 195 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 196 when(enqOH.asUInt.orR && !io.redirect.valid){ 197 connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits))) 198 } 199 } 200 // robBanks0 include robidx : 0 8 16 24 32 ... 201 val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1)))) 202 // each Bank has 20 Entries, read addr is one hot 203 // all banks use same raddr 204 val eachBankEntrieNum = robBanks(0).length 205 val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W)) 206 val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W)) 207 robBanksRaddrThisLine := robBanksRaddrNextLine 208 val bankNumWidth = log2Up(bankNum) 209 val deqPtrWidth = deqPtr.value.getWidth 210 val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W)))) 211 val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W)))) 212 // robBanks read 213 val robBanksRdataThisLine = VecInit(robBanks.map{ case bank => 214 Mux1H(robBanksRaddrThisLine, bank) 215 }) 216 val robBanksRdataNextLine = VecInit(robBanks.map{ case bank => 217 val shiftBank = bank.drop(1) :+ bank(0) 218 Mux1H(robBanksRaddrThisLine, shiftBank) 219 }) 220 val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 221 val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 222 val commitValidThisLine = Wire(Vec(CommitWidth, Bool())) 223 val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 224 val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 225 val allCommitted = Wire(Bool()) 226 227 when(allCommitted) { 228 hasCommitted := 0.U.asTypeOf(hasCommitted) 229 }.elsewhen(io.commits.isCommit){ 230 for (i <- 0 until CommitWidth){ 231 hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i) 232 } 233 } 234 allCommitted := io.commits.isCommit && commitValidThisLine.last 235 val walkPtrHead = Wire(new RobPtr) 236 val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr 237 when(io.redirect.valid){ 238 robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth)) 239 }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){ 240 robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1) 241 }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){ 242 robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth)) 243 }.otherwise( 244 robBanksRaddrNextLine := robBanksRaddrThisLine 245 ) 246 val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle)) 247 val rawInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 248 val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq 249 val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 250 for (i <- 0 until CommitWidth) { 251 connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i)) 252 when(allCommitted){ 253 connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i)) 254 } 255 } 256 257 // In each robentry, the ftqIdx and ftqOffset belong to the first instruction that was compressed, 258 // That is Necessary when exceptions happen. 259 // Update the ftqOffset to correctly notify the frontend which instructions have been committed. 260 // Instructions in multiple Ftq entries compressed to one RobEntry do not occur. 261 for (i <- 0 until CommitWidth) { 262 val lastOffset = (rawInfo(i).traceBlockInPipe.iretire - (1.U << rawInfo(i).traceBlockInPipe.ilastsize.asUInt).asUInt) + rawInfo(i).ftqOffset 263 commitInfo(i).ftqOffset := Mux(CommitType.isFused(rawInfo(i).commitType), rawInfo(i).ftqOffset, lastOffset) 264 } 265 266 // data for debug 267 // Warn: debug_* prefix should not exist in generated verilog. 268 val debug_microOp = DebugMem(RobSize, new DynInst) 269 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug 270 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug 271 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 272 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 273 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 274 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 275 276 val isEmpty = enqPtr === deqPtr 277 val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) 278 val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 279 snapshotPtrVec(0) := io.enq.req(0).bits.robIdx 280 for (i <- 1 until CommitWidth) { 281 snapshotPtrVec(i) := snapshotPtrVec(0) + i.U 282 } 283 val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 284 val debug_lsIssue = WireDefault(debug_lsIssued) 285 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 286 287 /** 288 * states of Rob 289 */ 290 val s_idle :: s_walk :: Nil = Enum(2) 291 val state = RegInit(s_idle) 292 val state_next = Wire(chiselTypeOf(state)) 293 294 val tip_computing :: tip_stalled :: tip_walk :: tip_drained :: Nil = Enum(4) 295 val tip_state = WireInit(0.U(4.W)) 296 when(!isEmpty) { // One or more inst in ROB 297 when(state === s_walk || io.redirect.valid) { 298 tip_state := tip_walk 299 }.elsewhen(io.commits.isCommit && PopCount(io.commits.commitValid) =/= 0.U) { 300 tip_state := tip_computing 301 }.otherwise { 302 tip_state := tip_stalled 303 } 304 }.otherwise { 305 tip_state := tip_drained 306 } 307 class TipEntry()(implicit p: Parameters) extends XSBundle { 308 val state = UInt(4.W) 309 val commits = new RobCommitIO() // info of commit 310 val redirect = Valid(new Redirect) // info of redirect 311 val redirect_pc = UInt(VAddrBits.W) // PC of the redirect uop 312 val debugLsInfo = new DebugLsInfo() 313 } 314 val tip_table = ChiselDB.createTable("Tip_" + p(XSCoreParamsKey).HartId.toString, new TipEntry) 315 val tip_data = Wire(new TipEntry()) 316 tip_data.state := tip_state 317 tip_data.commits := io.commits 318 tip_data.redirect := io.redirect 319 tip_data.redirect_pc := debug_microOp(io.redirect.bits.robIdx.value).pc 320 tip_data.debugLsInfo := debug_lsInfo(io.commits.robIdx(0).value) 321 tip_table.log(tip_data, true.B, "", clock, reset) 322 323 val exceptionGen = Module(new ExceptionGen(params)) 324 val exceptionDataRead = exceptionGen.io.state 325 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 326 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 327 io.robDeqPtr := deqPtr 328 io.debugRobHead := debug_microOp(deqPtr.value) 329 330 /** 331 * connection of [[rab]] 332 */ 333 rab.io.redirect.valid := io.redirect.valid 334 335 rab.io.req.zip(io.enq.req).map { case (dest, src) => 336 dest.bits := src.bits 337 dest.valid := src.valid && io.enq.canAccept 338 } 339 340 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 341 val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)}) 342 val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)}) 343 val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _))) 344 val walkSizeSumSeq = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _))) 345 val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit}) 346 val walkSizeSumCond = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk}) 347 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 348 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 349 350 val deqVlsExceptionNeedCommit = RegInit(false.B) 351 val deqVlsExceptionCommitSize = RegInit(0.U(log2Up(MaxUopSize + 1).W)) 352 val deqVlsCanCommit= RegInit(false.B) 353 rab.io.fromRob.commitSize := Mux(deqVlsExceptionNeedCommit, deqVlsExceptionCommitSize, commitSizeSum) 354 rab.io.fromRob.walkSize := walkSizeSum 355 rab.io.fromRob.vecLoadExcp.valid := RegNext(exceptionDataRead.valid && exceptionDataRead.bits.isVecLoad) 356 rab.io.fromRob.vecLoadExcp.bits.isStrided := RegEnable(exceptionDataRead.bits.isStrided, exceptionDataRead.valid) 357 rab.io.fromRob.vecLoadExcp.bits.isVlm := RegEnable(exceptionDataRead.bits.isVlm, exceptionDataRead.valid) 358 rab.io.snpt := io.snpt 359 rab.io.snpt.snptEnq := snptEnq 360 361 // pipe rab commits for better timing and area 362 io.rabCommits := RegNext(rab.io.commits) 363 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 364 365 /** 366 * connection of [[vtypeBuffer]] 367 */ 368 369 vtypeBuffer.io.redirect.valid := io.redirect.valid 370 371 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 372 sink.valid := source.valid && io.enq.canAccept 373 sink.bits := source.bits 374 } 375 376 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 377 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 378 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 379 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 380 vtypeBuffer.io.snpt := io.snpt 381 vtypeBuffer.io.snpt.snptEnq := snptEnq 382 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 383 io.toDecode.walkToArchVType := vtypeBuffer.io.toDecode.walkToArchVType 384 io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType 385 io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType 386 387 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 388 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 389 when(isEmpty) { 390 hasBlockBackward := false.B 391 } 392 // When any instruction commits, hasNoSpecExec should be set to false.B 393 when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) { 394 hasWaitForward := false.B 395 } 396 397 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 398 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 399 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 400 val hasWFI = RegInit(false.B) 401 io.cpu_halt := hasWFI 402 // WFI Timeout: 2^20 = 1M cycles 403 val wfi_cycles = RegInit(0.U(20.W)) 404 when(hasWFI) { 405 wfi_cycles := wfi_cycles + 1.U 406 }.elsewhen(!hasWFI && RegNext(hasWFI)) { 407 wfi_cycles := 0.U 408 } 409 val wfi_timeout = if (wfiResume) wfi_cycles.andR else false.B 410 when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 411 hasWFI := false.B 412 } 413 414 for (i <- 0 until RenameWidth) { 415 // we don't check whether io.redirect is valid here since redirect has higher priority 416 when(canEnqueue(i)) { 417 val enqUop = io.enq.req(i).bits 418 val enqIndex = allocatePtrVec(i).value 419 // store uop in data module and debug_microOp Vec 420 debug_microOp(enqIndex) := enqUop 421 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 422 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 423 debug_microOp(enqIndex).debugInfo.selectTime := timer 424 debug_microOp(enqIndex).debugInfo.issueTime := timer 425 debug_microOp(enqIndex).debugInfo.writebackTime := timer 426 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 427 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 428 debug_lsInfo(enqIndex) := DebugLsInfo.init 429 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 430 debug_lqIdxValid(enqIndex) := false.B 431 debug_lsIssued(enqIndex) := false.B 432 when (enqUop.waitForward) { 433 hasWaitForward := true.B 434 } 435 val enqTriggerActionIsDebugMode = TriggerAction.isDmode(io.enq.req(i).bits.trigger) 436 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 437 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 438 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) { 439 doingSvinval := true.B 440 } 441 // the end instruction of Svinval enqs so clear doingSvinval 442 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) { 443 doingSvinval := false.B 444 } 445 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 446 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe) || enqUop.isNotSvinval)) 447 when(enqUop.isWFI && !enqHasException && !enqTriggerActionIsDebugMode) { 448 hasWFI := true.B 449 } 450 451 robEntries(enqIndex).mmio := false.B 452 robEntries(enqIndex).vls := enqUop.vlsInstr 453 } 454 } 455 456 for (i <- 0 until RenameWidth) { 457 val enqUop = io.enq.req(i) 458 when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) { 459 hasBlockBackward := true.B 460 } 461 } 462 463 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 464 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 465 466 when(!io.wfi_enable) { 467 hasWFI := false.B 468 } 469 // sel vsetvl's flush position 470 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 471 val vsetvlState = RegInit(vs_idle) 472 473 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 474 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 475 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 476 477 val enq0 = io.enq.req(0) 478 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 479 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 480 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire } 481 // for vs_idle 482 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 483 // for vs_waitVinstr 484 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 485 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 486 when(vsetvlState === vs_idle) { 487 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 488 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 489 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 490 }.elsewhen(vsetvlState === vs_waitVinstr) { 491 when(Cat(enqIsVInstrOrVset).orR) { 492 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 493 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 494 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 495 } 496 } 497 498 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 499 when(vsetvlState === vs_idle && !io.redirect.valid) { 500 when(enq0IsVsetFlush) { 501 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 502 } 503 }.elsewhen(vsetvlState === vs_waitVinstr) { 504 when(io.redirect.valid) { 505 vsetvlState := vs_idle 506 }.elsewhen(Cat(enqIsVInstrOrVset).orR) { 507 vsetvlState := vs_waitFlush 508 } 509 }.elsewhen(vsetvlState === vs_waitFlush) { 510 when(io.redirect.valid) { 511 vsetvlState := vs_idle 512 } 513 } 514 515 // lqEnq 516 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 517 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 518 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 519 debug_lqIdxValid(req.bits.robIdx.value) := true.B 520 } 521 } 522 523 // lsIssue 524 when(io.debugHeadLsIssue) { 525 debug_lsIssued(deqPtr.value) := true.B 526 } 527 528 /** 529 * Writeback (from execution units) 530 */ 531 for (wb <- exuWBs) { 532 val wbIdx = wb.bits.robIdx.value 533 val debug_Uop = debug_microOp(wbIdx) 534 when(wb.valid) { 535 debug_exuData(wbIdx) := wb.bits.data(0) 536 debug_exuDebug(wbIdx) := wb.bits.debug 537 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 538 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 539 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 540 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 541 542 // debug for lqidx and sqidx 543 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 544 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 545 } 546 XSInfo(wb.valid, 547 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 548 p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 549 p"skip ${wb.bits.debug.isSkipDiff} robIdx: ${wb.bits.robIdx}\n" 550 ) 551 } 552 553 val writebackNum = PopCount(exuWBs.map(_.valid)) 554 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 555 556 for (i <- 0 until LoadPipelineWidth) { 557 when(RegNext(io.lsq.mmio(i))) { 558 robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B 559 } 560 } 561 562 563 /** 564 * RedirectOut: Interrupt and Exceptions 565 */ 566 val debug_deqUop = debug_microOp(deqPtr.value) 567 568 val deqPtrEntry = rawInfo(0) 569 val deqPtrEntryValid = deqPtrEntry.commit_v 570 val deqHasFlushed = RegInit(false.B) 571 val intrBitSetReg = RegNext(io.csr.intrBitSet) 572 val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe && !deqHasFlushed 573 val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w 574 val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 575 val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState 576 val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || TriggerAction.isDmode(exceptionDataRead.bits.trigger) 577 val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w))) 578 val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe && !deqHasException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w))) 579 val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst 580 val deqIsVlsException = deqHasException && deqPtrEntry.isVls && !exceptionDataRead.bits.isEnqExcp 581 // delay 2 cycle wait exceptionGen out 582 // vls exception can be committed only when RAB commit all its reg pairs 583 deqVlsCanCommit := RegNext(RegNext(deqIsVlsException && deqPtrEntry.commit_w)) && rab.io.status.commitEnd 584 585 // lock at assertion of deqVlsExceptionNeedCommit until condition not assert 586 val deqVlsExcpLock = RegInit(false.B) 587 val handleVlsExcp = deqIsVlsException && deqVlsCanCommit && !deqVlsExcpLock && state === s_idle 588 when(handleVlsExcp) { 589 deqVlsExcpLock := true.B 590 }.elsewhen(deqPtrVec.head =/= deqPtrVec_next.head) { 591 deqVlsExcpLock := false.B 592 } 593 594 // Only assert once when deqVlsExcp occurs until condition not assert to avoid multi message passed to RAB 595 when (deqVlsExceptionNeedCommit) { 596 deqVlsExceptionNeedCommit := false.B 597 }.elsewhen(handleVlsExcp){ 598 deqVlsExceptionCommitSize := deqPtrEntry.realDestSize 599 deqVlsExceptionNeedCommit := true.B 600 } 601 602 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 603 XSDebug(deqHasException && TriggerAction.isDmode(exceptionDataRead.bits.trigger), "Debug Mode: Deq has trigger entry debug Mode\n") 604 605 val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst) 606 607 val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushPipe && exceptionDataRead.bits.isVset 608 // val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 609 val needModifyFtqIdxOffset = false.B 610 io.isVsetFlushPipe := isVsetFlushPipe 611 // io.flushOut will trigger redirect at the next cycle. 612 // Block any redirect or commit at the next cycle. 613 val lastCycleFlush = RegNext(io.flushOut.valid) 614 615 io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit) || isFlushPipe) && !lastCycleFlush 616 io.flushOut.bits := DontCare 617 io.flushOut.bits.isRVC := deqPtrEntry.isRVC 618 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 619 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqPtrEntry.ftqIdx) 620 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqPtrEntry.ftqOffset) 621 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 622 io.flushOut.bits.interrupt := true.B 623 XSPerfAccumulate("flush_num", io.flushOut.valid) 624 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 625 XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException) 626 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 627 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 628 629 val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit)) && !lastCycleFlush 630 io.exception.valid := RegNext(exceptionHappen) 631 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 632 io.exception.bits.gpaddr := io.readGPAMemData.gpaddr 633 io.exception.bits.isForVSnonLeafPTE := io.readGPAMemData.isForVSnonLeafPTE 634 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 635 io.exception.bits.commitType := RegEnable(deqPtrEntry.commitType, exceptionHappen) 636 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 637 // fetch trigger fire or execute ebreak 638 io.exception.bits.isPcBkpt := RegEnable( 639 exceptionDataRead.bits.exceptionVec(ExceptionNO.EX_BP) && ( 640 exceptionDataRead.bits.isEnqExcp || 641 exceptionDataRead.bits.trigger === TriggerAction.None 642 ), 643 exceptionHappen, 644 ) 645 io.exception.bits.isFetchMalAddr := RegEnable(exceptionDataRead.bits.isFetchMalAddr && deqHasException, exceptionHappen) 646 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 647 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 648 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 649 io.exception.bits.isHls := RegEnable(deqPtrEntry.isHls, exceptionHappen) 650 io.exception.bits.vls := RegEnable(deqPtrEntry.vls, exceptionHappen) 651 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 652 653 // data will be one cycle after valid 654 io.readGPAMemAddr.valid := exceptionHappen 655 io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr 656 io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset 657 658 XSDebug(io.flushOut.valid, 659 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 660 p"excp $deqHasException flushPipe $isFlushPipe " + 661 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget.pc)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 662 663 664 /** 665 * Commits (and walk) 666 * They share the same width. 667 */ 668 // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2 669 val shouldWalkVec = Wire(Vec(CommitWidth,Bool())) 670 val walkingPtrVec = RegNext(walkPtrVec) 671 when(io.redirect.valid){ 672 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 673 }.elsewhen(RegNext(io.redirect.valid)){ 674 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 675 }.elsewhen(state === s_walk){ 676 shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2)) 677 }.otherwise( 678 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 679 ) 680 val walkFinished = walkPtrTrue > lastWalkPtr 681 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 682 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 683 684 require(RenameWidth <= CommitWidth) 685 686 // wiring to csr 687 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 688 val v = io.commits.commitValid(i) 689 val info = io.commits.info(i) 690 (v & info.wflags, v & info.dirtyFs) 691 }).unzip 692 val fflags = Wire(Valid(UInt(5.W))) 693 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 694 fflags.bits := wflags.zip(fflagsDataRead).map({ 695 case (w, f) => Mux(w, f, 0.U) 696 }).reduce(_ | _) 697 val dirtyVs = (0 until CommitWidth).map(i => { 698 val v = io.commits.commitValid(i) 699 val info = io.commits.info(i) 700 v & info.dirtyVs 701 }) 702 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 703 val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR 704 705 val resetVstart = dirty_vs && !io.vstartIsZero 706 707 vecExcpInfo.valid := exceptionHappen && !intrEnable && exceptionDataRead.bits.vstartEn && exceptionDataRead.bits.isVecLoad && !exceptionDataRead.bits.isEnqExcp 708 when (exceptionHappen) { 709 vecExcpInfo.bits.nf := exceptionDataRead.bits.nf 710 vecExcpInfo.bits.vsew := exceptionDataRead.bits.vsew 711 vecExcpInfo.bits.veew := exceptionDataRead.bits.veew 712 vecExcpInfo.bits.vlmul := exceptionDataRead.bits.vlmul 713 vecExcpInfo.bits.isStride := exceptionDataRead.bits.isStrided 714 vecExcpInfo.bits.isIndexed := exceptionDataRead.bits.isIndexed 715 vecExcpInfo.bits.isWhole := exceptionDataRead.bits.isWhole 716 vecExcpInfo.bits.isVlm := exceptionDataRead.bits.isVlm 717 vecExcpInfo.bits.vstart := exceptionDataRead.bits.vstart 718 } 719 720 io.csr.vstart.valid := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstartEn, resetVstart)) 721 io.csr.vstart.bits := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstart, 0.U)) 722 723 val vxsat = Wire(Valid(Bool())) 724 vxsat.valid := io.commits.isCommit && vxsat.bits 725 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 726 case (valid, vxsat) => valid & vxsat 727 }.reduce(_ | _) 728 729 // when mispredict branches writeback, stop commit in the next 2 cycles 730 // TODO: don't check all exu write back 731 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 732 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 733 ).toSeq)).orR 734 val misPredBlockCounter = Reg(UInt(3.W)) 735 misPredBlockCounter := Mux(misPredWb, 736 "b111".U, 737 misPredBlockCounter >> 1.U 738 ) 739 val misPredBlock = misPredBlockCounter(0) 740 val deqFlushBlockCounter = Reg(UInt(3.W)) 741 val deqFlushBlock = deqFlushBlockCounter(0) 742 val deqHasCommitted = io.commits.isCommit && io.commits.commitValid(0) 743 // TODO *** WARNING *** 744 // Blocking commit. Don't change this before we fully understand the logic. 745 val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr) || RegNext(RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr)) 746 val criticalErrorState = io.csr.criticalErrorState 747 when(deqNeedFlush && deqHitRedirectReg){ 748 deqFlushBlockCounter := "b111".U 749 }.otherwise{ 750 deqFlushBlockCounter := deqFlushBlockCounter >> 1.U 751 } 752 when(deqHasCommitted){ 753 deqHasFlushed := false.B 754 }.elsewhen(deqNeedFlush && io.flushOut.valid && !io.flushOut.bits.flushItself()){ 755 deqHasFlushed := true.B 756 } 757 val traceBlock = io.trace.blockCommit 758 val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid || 759 (deqNeedFlush && !deqHasFlushed) || deqFlushBlock || criticalErrorState || traceBlock 760 761 io.commits.isWalk := state === s_walk 762 io.commits.isCommit := state === s_idle && !blockCommit 763 764 val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid)) 765 val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v)) 766 val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w)) 767 val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U) 768 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i))) 769 val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg 770 // for instructions that may block others, we don't allow them to commit 771 io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid))) 772 773 for (i <- 0 until CommitWidth) { 774 // defaults: state === s_idle and instructions commit 775 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 776 val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed) 777 val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B 778 commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i) 779 io.commits.info(i) := commitInfo(i) 780 io.commits.robIdx(i) := deqPtrVec(i) 781 val deqDebugInst = debug_microOp(deqPtrVec(i).value) 782 PerfCCT.commitInstMeta(i.U, deqDebugInst.debug_seqNum, deqDebugInst.instrSize, io.commits.isCommit && io.commits.commitValid(i), clock, reset) 783 784 io.commits.walkValid(i) := shouldWalkVec(i) 785 XSError( 786 state === s_walk && 787 io.commits.isWalk && state === s_walk && shouldWalkVec(i) && 788 !walk_v(i), 789 s"The walking entry($i) should be valid\n") 790 791 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 792 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 793 debug_microOp(deqPtrVec(i).value).pc, 794 io.commits.info(i).rfWen, 795 io.commits.info(i).debug_ldest.getOrElse(0.U), 796 io.commits.info(i).debug_pdest.getOrElse(0.U), 797 debug_exuData(deqPtrVec(i).value), 798 fflagsDataRead(i), 799 vxsatDataRead(i) 800 ) 801 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 802 debug_microOp(walkPtrVec(i).value).pc, 803 io.commits.info(i).rfWen, 804 io.commits.info(i).debug_ldest.getOrElse(0.U), 805 debug_exuData(walkPtrVec(i).value) 806 ) 807 } 808 809 // sync fflags/dirty_fs/vxsat to csr 810 io.csr.fflags := RegNextWithEnable(fflags) 811 io.csr.dirty_fs := GatedValidRegNext(dirty_fs) 812 io.csr.dirty_vs := GatedValidRegNext(dirty_vs) 813 io.csr.vxsat := RegNextWithEnable(vxsat) 814 815 // commit load/store to lsq 816 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 817 // TODO: Check if meet the require that only set scommit when commit scala store uop 818 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls )) 819 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 820 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 821 // indicate a pending load or store 822 io.lsq.pendingMMIOld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && deqPtrEntryValid && deqPtrEntry.mmio) 823 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && deqPtrEntryValid) 824 // TODO: Check if need deassert pendingst when it is vst 825 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && deqPtrEntryValid) 826 // TODO: Check if set correctly when vector store is at the head of ROB 827 io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && deqPtrEntryValid && deqPtrEntry.vls) 828 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 829 io.lsq.pendingPtr := RegNext(deqPtr) 830 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 831 832 /** 833 * state changes 834 * (1) redirect: switch to s_walk 835 * (2) walk: when walking comes to the end, switch to s_idle 836 */ 837 state_next := Mux( 838 io.redirect.valid || RegNext(io.redirect.valid), s_walk, 839 Mux( 840 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 841 state 842 ) 843 ) 844 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 845 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 846 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 847 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 848 state := state_next 849 850 /** 851 * pointers and counters 852 */ 853 val deqPtrGenModule = Module(new NewRobDeqPtrWrapper) 854 deqPtrGenModule.io.state := state 855 deqPtrGenModule.io.deq_v := commit_vDeqGroup 856 deqPtrGenModule.io.deq_w := commit_wDeqGroup 857 deqPtrGenModule.io.exception_state := exceptionDataRead 858 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 859 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 860 deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit 861 deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe 862 deqPtrGenModule.io.blockCommit := blockCommit 863 deqPtrGenModule.io.hasCommitted := hasCommitted 864 deqPtrGenModule.io.allCommitted := allCommitted 865 deqPtrVec := deqPtrGenModule.io.out 866 deqPtrVec_next := deqPtrGenModule.io.next_out 867 868 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 869 enqPtrGenModule.io.redirect := io.redirect 870 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq && !io.fromVecExcpMod.busy 871 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 872 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 873 enqPtrVec := enqPtrGenModule.io.out 874 875 // next walkPtrVec: 876 // (1) redirect occurs: update according to state 877 // (2) walk: move forwards 878 val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr 879 val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U)) 880 val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr 881 val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U)) 882 val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid, 883 Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk), 884 Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 885 ) 886 val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid, 887 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)), 888 Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue) 889 ) 890 walkPtrHead := walkPtrVec_next.head 891 walkPtrVec := walkPtrVec_next 892 walkPtrTrue := walkPtrTrue_next 893 // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update 894 val walkPtrLowBits = Reg(UInt(bankAddrWidth.W)) 895 when(io.redirect.valid){ 896 walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0)) 897 } 898 when(io.redirect.valid) { 899 donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk) 900 }.elsewhen(RegNext(io.redirect.valid)){ 901 donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits)) 902 }.otherwise{ 903 donotNeedWalk := 0.U.asTypeOf(donotNeedWalk) 904 } 905 walkDestSizeDeqGroup.zip(walkPtrVec_next).map { 906 case (reg, ptrNext) => reg := deqPtrEntry.realDestSize 907 } 908 val numValidEntries = distanceBetween(enqPtr, deqPtr) 909 val commitCnt = PopCount(io.commits.commitValid) 910 911 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 912 allowEnqueueForDispatch := numValidEntries + dispatchNum <= (RobSize - 2 * RenameWidth).U 913 914 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 915 when(io.redirect.valid) { 916 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 917 } 918 919 920 /** 921 * States 922 * We put all the stage bits changes here. 923 * 924 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 925 * All states: (1) valid; (2) writebacked; (3) flagBkup 926 */ 927 928 val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr)) 929 deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U } 930 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 931 932 val redirectValidReg = RegNext(io.redirect.valid) 933 val redirectBegin = Reg(UInt(log2Up(RobSize).W)) 934 val redirectEnd = Reg(UInt(log2Up(RobSize).W)) 935 val redirectAll = RegInit(false.B) 936 when(io.redirect.valid){ 937 redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value) 938 redirectEnd := enqPtr.value 939 redirectAll := io.redirect.bits.flushItself() && (io.redirect.bits.robIdx.value === enqPtr.value) && (io.redirect.bits.robIdx.flag ^ enqPtr.flag) 940 } 941 942 // update robEntries valid 943 for (i <- 0 until RobSize) { 944 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 945 val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _) 946 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 947 val needFlush = redirectValidReg && (Mux( 948 redirectEnd > redirectBegin, 949 (i.U > redirectBegin) && (i.U < redirectEnd), 950 (i.U > redirectBegin) || (i.U < redirectEnd) 951 ) || redirectAll) 952 when(commitCond) { 953 robEntries(i).valid := false.B 954 }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) { 955 robEntries(i).valid := true.B 956 }.elsewhen(needFlush){ 957 robEntries(i).valid := false.B 958 } 959 } 960 961 // debug_inst update 962 for (i <- 0 until (LduCnt + StaCnt)) { 963 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 964 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 965 debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i)) 966 } 967 for (i <- 0 until LduCnt) { 968 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 969 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 970 } 971 972 // status field: writebacked 973 // enqueue logic set 6 writebacked to false 974 975 // writeback logic set numWbPorts writebacked to true 976 977 // if the first uop of an instruction is valid , write writebackedCounter 978 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 979 val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop) 980 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 981 val enqHasExcpSeq = io.enq.req.map(_.bits.hasException) 982 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 983 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 984 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 985 986 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 987 req => FuType.isStore(req.bits.fuType) 988 }) 989 val fflags_wb = fflagsWBs 990 val vxsat_wb = vxsatWBs 991 for (i <- 0 until RobSize) { 992 993 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 994 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 995 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 996 val instCanEnqFlag = Cat(instCanEnqSeq).orR 997 val hasExcpSeq = enqHasExcpSeq.lazyZip(robIdxMatchSeq).lazyZip(uopEnqValidSeq).map { case (excp, isMatch, valid) => excp && isMatch && valid } 998 val hasExcpFlag = Cat(hasExcpSeq).orR 999 val isFirstEnq = !robEntries(i).valid && instCanEnqFlag 1000 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 1001 when(isFirstEnq){ 1002 robEntries(i).realDestSize := realDestEnqNum //Mux(hasExcpFlag, 0.U, realDestEnqNum) 1003 }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){ 1004 robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum 1005 } 1006 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1007 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1008 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1009 1010 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1011 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1012 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 1013 1014 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1015 val needFlush = robEntries(i).needFlush 1016 val needFlushWriteBack = Wire(Bool()) 1017 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 1018 when(robEntries(i).valid){ 1019 needFlush := needFlush || needFlushWriteBack 1020 } 1021 1022 when(robEntries(i).valid && (needFlush || needFlushWriteBack)) { 1023 // exception flush 1024 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 1025 robEntries(i).stdWritebacked := true.B 1026 }.elsewhen(!robEntries(i).valid && instCanEnqFlag) { 1027 // enq set num of uops 1028 robEntries(i).uopNum := enqWBNum 1029 robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1030 }.elsewhen(robEntries(i).valid) { 1031 // update by writing back 1032 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 1033 assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!") 1034 when(canStdWbSeq.asUInt.orR) { 1035 robEntries(i).stdWritebacked := true.B 1036 } 1037 } 1038 1039 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1040 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1041 when(isFirstEnq) { 1042 robEntries(i).fflags := 0.U 1043 }.elsewhen(fflagsRes.orR) { 1044 robEntries(i).fflags := robEntries(i).fflags | fflagsRes 1045 } 1046 1047 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1048 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1049 when(isFirstEnq) { 1050 robEntries(i).vxsat := 0.U 1051 }.elsewhen(vxsatRes.orR) { 1052 robEntries(i).vxsat := robEntries(i).vxsat | vxsatRes 1053 } 1054 1055 // trace 1056 val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) 1057 when(robEntries(i).valid && Itype.isBranchType(robEntries(i).traceBlockInPipe.itype) && taken){ 1058 // BranchType code(notaken itype = 4) must be correctly replaced! 1059 robEntries(i).traceBlockInPipe.itype := Itype.Taken 1060 } 1061 } 1062 1063 // begin update robBanksRdata 1064 val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1065 val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle)) 1066 needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1067 val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine 1068 for (i <- 0 until 2 * CommitWidth) { 1069 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i)) 1070 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1071 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1072 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1073 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 1074 when(!needUpdate(i).valid && instCanEnqFlag) { 1075 needUpdate(i).realDestSize := realDestEnqNum 1076 }.elsewhen(needUpdate(i).valid && instCanEnqFlag) { 1077 needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum 1078 } 1079 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1080 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1081 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1082 1083 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1084 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1085 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 1086 1087 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1088 val needFlush = robBanksRdata(i).needFlush 1089 val needFlushWriteBack = Wire(Bool()) 1090 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 1091 when(needUpdate(i).valid) { 1092 needUpdate(i).needFlush := needFlush || needFlushWriteBack 1093 } 1094 1095 when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) { 1096 // exception flush 1097 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1098 needUpdate(i).stdWritebacked := true.B 1099 }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) { 1100 // enq set num of uops 1101 needUpdate(i).uopNum := enqWBNum 1102 needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1103 }.elsewhen(needUpdate(i).valid) { 1104 // update by writing back 1105 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1106 when(canStdWbSeq.asUInt.orR) { 1107 needUpdate(i).stdWritebacked := true.B 1108 } 1109 } 1110 1111 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B)) 1112 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1113 needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes) 1114 1115 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1116 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1117 needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes) 1118 1119 // trace 1120 val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) 1121 when(robBanksRdata(i).valid && Itype.isBranchType(robBanksRdata(i).traceBlockInPipe.itype) && taken){ 1122 // BranchType code(notaken itype = 4) must be correctly replaced! 1123 needUpdate(i).traceBlockInPipe.itype := Itype.Taken 1124 } 1125 } 1126 robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8)) 1127 robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8)) 1128 // end update robBanksRdata 1129 1130 // interrupt_safe 1131 for (i <- 0 until RenameWidth) { 1132 when(canEnqueue(i)) { 1133 // For now, we allow non-load-store instructions to trigger interrupts 1134 // For MMIO instructions, they should not trigger interrupts since they may 1135 // be sent to lower level before it writes back. 1136 // However, we cannot determine whether a load/store instruction is MMIO. 1137 // Thus, we don't allow load/store instructions to trigger an interrupt. 1138 // TODO: support non-MMIO load-store instructions to trigger interrupts 1139 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) && !FuType.isFence(io.enq.req(i).bits.fuType) && !FuType.isCsr(io.enq.req(i).bits.fuType) && !FuType.isVset(io.enq.req(i).bits.fuType) 1140 robEntries(allocatePtrVec(i).value).interrupt_safe := allow_interrupts 1141 } 1142 } 1143 1144 /** 1145 * read and write of data modules 1146 */ 1147 val commitReadAddr_next = Mux(state_next === s_idle, 1148 VecInit(deqPtrVec_next.map(_.value)), 1149 VecInit(walkPtrVec_next.map(_.value)) 1150 ) 1151 1152 exceptionGen.io.redirect <> io.redirect 1153 exceptionGen.io.flush := io.flushOut.valid 1154 1155 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1156 for (i <- 0 until RenameWidth) { 1157 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1158 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1159 exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr 1160 exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset 1161 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1162 exceptionGen.io.enq(i).bits.hasException := io.enq.req(i).bits.hasException 1163 exceptionGen.io.enq(i).bits.isEnqExcp := io.enq.req(i).bits.hasException 1164 exceptionGen.io.enq(i).bits.isFetchMalAddr := io.enq.req(i).bits.isFetchMalAddr 1165 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1166 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1167 exceptionGen.io.enq(i).bits.replayInst := false.B 1168 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1169 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1170 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1171 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.trigger 1172 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1173 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1174 exceptionGen.io.enq(i).bits.vuopIdx := 0.U 1175 exceptionGen.io.enq(i).bits.isVecLoad := false.B 1176 exceptionGen.io.enq(i).bits.isVlm := false.B 1177 exceptionGen.io.enq(i).bits.isStrided := false.B 1178 exceptionGen.io.enq(i).bits.isIndexed := false.B 1179 exceptionGen.io.enq(i).bits.isWhole := false.B 1180 exceptionGen.io.enq(i).bits.nf := 0.U 1181 exceptionGen.io.enq(i).bits.vsew := 0.U 1182 exceptionGen.io.enq(i).bits.veew := 0.U 1183 exceptionGen.io.enq(i).bits.vlmul := 0.U 1184 } 1185 1186 println(s"ExceptionGen:") 1187 println(s"num of exceptions: ${params.numException}") 1188 require(exceptionWBs.length == exceptionGen.io.wb.length, 1189 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1190 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1191 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1192 exc_wb.valid := wb.valid 1193 exc_wb.bits.robIdx := wb.bits.robIdx 1194 // only enq inst use ftqPtr to read gpa 1195 exc_wb.bits.ftqPtr := 0.U.asTypeOf(exc_wb.bits.ftqPtr) 1196 exc_wb.bits.ftqOffset := 0.U.asTypeOf(exc_wb.bits.ftqOffset) 1197 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1198 exc_wb.bits.hasException := wb.bits.exceptionVec.get.asUInt.orR // Todo: use io.writebackNeedFlush(i) instead 1199 exc_wb.bits.isEnqExcp := false.B 1200 exc_wb.bits.isFetchMalAddr := false.B 1201 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1202 exc_wb.bits.isVset := false.B 1203 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1204 exc_wb.bits.singleStep := false.B 1205 exc_wb.bits.crossPageIPFFix := false.B 1206 val trigger = wb.bits.trigger.getOrElse(TriggerAction.None).asTypeOf(exc_wb.bits.trigger) 1207 exc_wb.bits.trigger := trigger 1208 exc_wb.bits.vstartEn := (if (wb.bits.vls.nonEmpty) wb.bits.exceptionVec.get.asUInt.orR || TriggerAction.isDmode(trigger) else 0.U) 1209 exc_wb.bits.vstart := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vstart else 0.U) 1210 exc_wb.bits.vuopIdx := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vuopIdx else 0.U) 1211 exc_wb.bits.isVecLoad := wb.bits.vls.map(_.isVecLoad).getOrElse(false.B) 1212 exc_wb.bits.isVlm := wb.bits.vls.map(_.isVlm).getOrElse(false.B) 1213 exc_wb.bits.isStrided := wb.bits.vls.map(_.isStrided).getOrElse(false.B) // strided need two mode tmp vreg 1214 exc_wb.bits.isIndexed := wb.bits.vls.map(_.isIndexed).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx 1215 exc_wb.bits.isWhole := wb.bits.vls.map(_.isWhole).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx 1216 exc_wb.bits.nf := wb.bits.vls.map(_.vpu.nf).getOrElse(0.U) 1217 exc_wb.bits.vsew := wb.bits.vls.map(_.vpu.vsew).getOrElse(0.U) 1218 exc_wb.bits.veew := wb.bits.vls.map(_.vpu.veew).getOrElse(0.U) 1219 exc_wb.bits.vlmul := wb.bits.vls.map(_.vpu.vlmul).getOrElse(0.U) 1220 } 1221 1222 fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags) 1223 vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat) 1224 1225 val isCommit = io.commits.isCommit 1226 val isCommitReg = GatedValidRegNext(io.commits.isCommit) 1227 val instrCntReg = RegInit(0.U(64.W)) 1228 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegEnable(v && CommitType.isFused(i.commitType), isCommit) }) 1229 val trueCommitCnt = RegEnable(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _), isCommit) +& fuseCommitCnt 1230 val retireCounter = Mux(isCommitReg, trueCommitCnt, 0.U) 1231 val instrCnt = instrCntReg + retireCounter 1232 when(isCommitReg){ 1233 instrCntReg := instrCnt 1234 } 1235 io.csr.perfinfo.retiredInstr := retireCounter 1236 io.robFull := !allowEnqueue 1237 io.headNotReady := commit_vDeqGroup(deqPtr.value(bankNumWidth-1, 0)) && !commit_wDeqGroup(deqPtr.value(bankNumWidth-1, 0)) 1238 1239 io.toVecExcpMod.logicPhyRegMap := rab.io.toVecExcpMod.logicPhyRegMap 1240 io.toVecExcpMod.excpInfo := vecExcpInfo 1241 1242 /** 1243 * trace 1244 */ 1245 1246 // trace output 1247 val traceValids = io.trace.traceCommitInfo.blocks.map(_.valid) 1248 val traceBlocks = io.trace.traceCommitInfo.blocks 1249 val traceBlockInPipe = io.trace.traceCommitInfo.blocks.map(_.bits.tracePipe) 1250 1251 // The reg 'isTraceXret' only for trace xret instructions. xret only occur in block(0). 1252 val isTraceXret = RegInit(false.B) 1253 when(io.csr.isXRet){ 1254 isTraceXret := true.B 1255 }.elsewhen(isTraceXret && io.commits.isCommit && io.commits.commitValid(0)){ 1256 isTraceXret := false.B 1257 } 1258 1259 for (i <- 0 until CommitWidth) { 1260 traceBlocks(i).bits.ftqIdx.foreach(_ := rawInfo(i).ftqIdx) 1261 traceBlocks(i).bits.ftqOffset.foreach(_ := rawInfo(i).ftqOffset) 1262 traceBlockInPipe(i).itype := rawInfo(i).traceBlockInPipe.itype 1263 traceBlockInPipe(i).iretire := rawInfo(i).traceBlockInPipe.iretire 1264 traceBlockInPipe(i).ilastsize := rawInfo(i).traceBlockInPipe.ilastsize 1265 traceValids(i) := io.commits.isCommit && io.commits.commitValid(i) 1266 // exception/xret only occur in block(0). 1267 if(i == 0) { 1268 when(isTraceXret && io.commits.isCommit && io.commits.commitValid(0)){ // trace xret 1269 traceBlocks(i).bits.tracePipe.itype := Itype.ExpIntReturn 1270 }.elsewhen(io.exception.valid){ // trace exception 1271 traceBlocks(i).bits.tracePipe.itype := Mux(io.exception.bits.isInterrupt, 1272 Itype.Interrupt, 1273 Itype.Exception 1274 ) 1275 traceValids(i) := true.B 1276 traceBlockInPipe(i).iretire := 0.U 1277 } 1278 } 1279 } 1280 1281 /** 1282 * debug info 1283 */ 1284 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1285 XSDebug("") 1286 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1287 for (i <- 0 until RobSize) { 1288 XSDebug(false, !robEntries(i).valid, "-") 1289 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w") 1290 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v") 1291 } 1292 XSDebug(false, true.B, "\n") 1293 1294 for (i <- 0 until RobSize) { 1295 if (i % 4 == 0) XSDebug("") 1296 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1297 XSDebug(false, !robEntries(i).valid, "- ") 1298 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ") 1299 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ") 1300 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1301 } 1302 1303 def ifCommit(counter: UInt): UInt = Mux(isCommit, counter, 0.U) 1304 1305 def ifCommitReg(counter: UInt): UInt = Mux(isCommitReg, counter, 0.U) 1306 1307 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1308 XSPerfAccumulate("clock_cycle", 1.U, XSPerfLevel.CRITICAL) 1309 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1310 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1311 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt), XSPerfLevel.CRITICAL) 1312 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1313 XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1314 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1315 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1316 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t } 1317 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1318 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1319 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t } 1320 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1321 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1322 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }))) 1323 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked))) 1324 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1325 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1326 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1327 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1328 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1329 private val walkCycle = RegInit(0.U(8.W)) 1330 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1331 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1332 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1333 1334 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1335 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1336 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1337 1338 private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked 1339 private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked 1340 private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked 1341 private val deqHeadInfo = debug_microOp(deqPtr.value) 1342 val deqUopCommitType = debug_microOp(deqPtr.value).commitType 1343 1344 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1345 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1346 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1347 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1348 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1349 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1350 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1351 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1352 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1353 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1354 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1355 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1356 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1357 1358 XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U) 1359 XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U) 1360 XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U) 1361 1362 val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax, 1363 VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt, 1364 VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum) 1365 1366 vfalufuop.zipWithIndex.map{ 1367 case(fuoptype,i) => XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U) 1368 } 1369 1370 1371 1372 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1373 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1374 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1375 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1376 XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U)) 1377 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U })) 1378 (2 to RenameWidth).foreach(i => 1379 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U })) 1380 ) 1381 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1382 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1383 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1384 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1385 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1386 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1387 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1388 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1389 1390 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1391 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1392 } 1393 1394 for (fuType <- FuType.functionNameMap.keys) { 1395 val fuName = FuType.functionNameMap(fuType) 1396 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U) 1397 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1398 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1399 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1400 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1401 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1402 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1403 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1404 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1405 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1406 } 1407 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1408 1409 // top-down info 1410 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1411 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1412 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1413 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1414 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1415 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1416 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1417 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1418 1419 // rolling 1420 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1421 1422 /** 1423 * DataBase info: 1424 * log trigger is at writeback valid 1425 * */ 1426 if (!env.FPGAPlatform) { 1427 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1428 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1429 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1430 for (wb <- exuWBs) { 1431 when(wb.valid) { 1432 val debug_instData = Wire(new InstInfoEntry) 1433 val idx = wb.bits.robIdx.value 1434 debug_instData.robIdx := idx 1435 debug_instData.dvaddr := wb.bits.debug.vaddr 1436 debug_instData.dpaddr := wb.bits.debug.paddr 1437 debug_instData.issueTime := wb.bits.debugInfo.issueTime 1438 debug_instData.writebackTime := wb.bits.debugInfo.writebackTime 1439 debug_instData.dispatchLatency := wb.bits.debugInfo.dispatchTime - wb.bits.debugInfo.renameTime 1440 debug_instData.enqRsLatency := wb.bits.debugInfo.enqRsTime - wb.bits.debugInfo.dispatchTime 1441 debug_instData.selectLatency := wb.bits.debugInfo.selectTime - wb.bits.debugInfo.enqRsTime 1442 debug_instData.issueLatency := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime 1443 debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime 1444 debug_instData.rsFuLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.enqRsTime 1445 debug_instData.tlbLatency := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime 1446 debug_instData.exceptType := Cat(wb.bits.exceptionVec.getOrElse(ExceptionVec(false.B))) 1447 debug_instData.lsInfo := debug_lsInfo(idx) 1448 // debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1449 // debug_instData.instType := wb.bits.uop.ctrl.fuType 1450 // debug_instData.ivaddr := wb.bits.uop.cf.pc 1451 // debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1452 // debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1453 debug_instTable.log( 1454 data = debug_instData, 1455 en = wb.valid, 1456 site = instSiteName, 1457 clock = clock, 1458 reset = reset 1459 ) 1460 } 1461 } 1462 } 1463 1464 val debug_VecOtherPdest = RegInit(VecInit.fill(RobSize)(VecInit.fill(8)(0.U(PhyRegIdxWidth.W)))) 1465 1466 vldWBs.map{ vldWb => 1467 val vldWbPdest = vldWb.bits.pdest 1468 val vldWbRobIdx = vldWb.bits.robIdx.value 1469 val vldWbvdIdx = vldWb.bits.vls.get.vdIdx 1470 when (vldWb.fire && robEntries(vldWbRobIdx).valid && (vldWb.bits.vecWen.get || vldWb.bits.v0Wen.get)) { 1471 debug_VecOtherPdest(vldWbRobIdx)(vldWbvdIdx) := vldWbPdest 1472 } 1473 } 1474 1475 //difftest signals 1476 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1477 1478 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1479 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1480 1481 for (i <- 0 until CommitWidth) { 1482 val idx = deqPtrVec(i).value 1483 wdata(i) := debug_exuData(idx) 1484 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1485 } 1486 1487 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1488 // These are the structures used by difftest only and should be optimized after synthesis. 1489 val dt_eliminatedMove = Mem(RobSize, Bool()) 1490 val dt_isRVC = Mem(RobSize, Bool()) 1491 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1492 for (i <- 0 until RenameWidth) { 1493 when(canEnqueue(i)) { 1494 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1495 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1496 } 1497 } 1498 for (wb <- exuWBs) { 1499 when(wb.valid) { 1500 val wbIdx = wb.bits.robIdx.value 1501 dt_exuDebug(wbIdx) := wb.bits.debug 1502 } 1503 } 1504 // Always instantiate basic difftest modules. 1505 for (i <- 0 until CommitWidth) { 1506 val uop = commitDebugUop(i) 1507 val commitInfo = io.commits.info(i) 1508 val ptr = deqPtrVec(i).value 1509 val exuOut = dt_exuDebug(ptr) 1510 val eliminatedMove = dt_eliminatedMove(ptr) 1511 val isRVC = dt_isRVC(ptr) 1512 val instr = uop.instr.asTypeOf(new XSInstBitFields) 1513 val isVLoad = instr.isVecLoad 1514 1515 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyRegs), delay = 3, dontCare = true) 1516 val dt_skip = Mux(eliminatedMove, false.B, exuOut.isSkipDiff) 1517 difftest.coreid := io.hartId 1518 difftest.index := i.U 1519 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1520 difftest.skip := dt_skip 1521 difftest.isRVC := isRVC 1522 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U 1523 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1524 difftest.vecwen := io.commits.commitValid(i) && uop.vecWen 1525 difftest.v0wen := io.commits.commitValid(i) && (uop.v0Wen || isVLoad && instr.VD === 0.U) 1526 difftest.wpdest := commitInfo.debug_pdest.get 1527 difftest.wdest := Mux(isVLoad, instr.VD, commitInfo.debug_ldest.get) 1528 difftest.otherwpdest := debug_VecOtherPdest(ptr) 1529 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1530 when(difftest.valid) { 1531 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1532 } 1533 if (env.EnableDifftest) { 1534 val uop = commitDebugUop(i) 1535 difftest.pc := SignExt(uop.pc, XLEN) 1536 difftest.instr := uop.instr 1537 difftest.robIdx := ZeroExt(ptr, 10) 1538 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1539 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1540 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1541 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1542 // Check LoadEvent only when isAmo or isLoad and skip MMIO 1543 val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3) 1544 difftestLoadEvent.coreid := io.hartId 1545 difftestLoadEvent.index := i.U 1546 val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType) || isVLoad) && !dt_skip 1547 difftestLoadEvent.valid := io.commits.commitValid(i) && io.commits.isCommit && loadCheck 1548 difftestLoadEvent.paddr := exuOut.paddr 1549 difftestLoadEvent.opType := uop.fuOpType 1550 difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType) 1551 difftestLoadEvent.isLoad := FuType.isLoad(uop.fuType) 1552 difftestLoadEvent.isVLoad := isVLoad 1553 } 1554 } 1555 } 1556 1557 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1558 val dt_isXSTrap = Mem(RobSize, Bool()) 1559 for (i <- 0 until RenameWidth) { 1560 when(canEnqueue(i)) { 1561 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1562 } 1563 } 1564 val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) => 1565 io.commits.isCommit && v && dt_isXSTrap(d.value) 1566 } 1567 val hitTrap = trapVec.reduce(_ || _) 1568 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1569 difftest.coreid := io.hartId 1570 difftest.hasTrap := hitTrap 1571 difftest.cycleCnt := timer 1572 difftest.instrCnt := instrCnt 1573 difftest.hasWFI := hasWFI 1574 1575 if (env.EnableDifftest) { 1576 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1577 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN) 1578 difftest.code := trapCode 1579 difftest.pc := trapPC 1580 } 1581 } 1582 1583 //store evetn difftest information 1584 io.storeDebugInfo := DontCare 1585 if (env.EnableDifftest) { 1586 io.storeDebugInfo.map{port => 1587 port.pc := debug_microOp(port.robidx.value).pc 1588 } 1589 } 1590 1591 val brhMispred = PopCount(branchWBs.map(wb => wb.valid & wb.bits.redirect.get.valid)) 1592 val jmpMispred = PopCount(jmpWBs.map(wb => wb.valid && wb.bits.redirect.get.valid)) 1593 val misPred = brhMispred +& jmpMispred 1594 1595 XSPerfAccumulate("br_mis_pred", misPred) 1596 1597 val commitLoadVec = VecInit(commitLoadValid) 1598 val commitBranchVec = VecInit(commitBranchValid) 1599 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }) 1600 val perfEvents = Seq( 1601 ("rob_interrupt_num ", io.flushOut.valid && intrEnable), 1602 ("rob_exception_num ", io.flushOut.valid && deqHasException), 1603 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe), 1604 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst), 1605 ("rob_commitUop ", ifCommit(commitCnt)), 1606 ("rob_commitInstr ", ifCommitReg(trueCommitCnt)), 1607 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt)), 1608 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegEnable(commitLoadVec, isCommit)))), 1609 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegEnable(commitBranchVec, isCommit)))), 1610 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegEnable(commitStoreVec, isCommit)))), 1611 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)), 1612 ("rob_walkCycle ", (state === s_walk)), 1613 ("rob_1_4_valid ", numValidEntries <= (RobSize / 4).U), 1614 ("rob_2_4_valid ", numValidEntries > (RobSize / 4).U && numValidEntries <= (RobSize / 2).U), 1615 ("rob_3_4_valid ", numValidEntries > (RobSize / 2).U && numValidEntries <= (RobSize * 3 / 4).U), 1616 ("rob_4_4_valid ", numValidEntries > (RobSize * 3 / 4).U), 1617 ("BR_MIS_PRED ", misPred), 1618 ("TOTAL_FLUSH ", io.flushOut.valid) 1619 ) 1620 generatePerfEvent() 1621 1622 // max commit-stuck cycle 1623 val deqismmio = Mux(robEntries(deqPtr.value).valid, robEntries(deqPtr.value).mmio, false.B) 1624 val commitStuck = (!io.commits.commitValid.reduce(_ || _) || !io.commits.isCommit) && !deqismmio 1625 val commitStuckCycle = RegInit(0.U(log2Up(maxCommitStuck).W)) 1626 when(commitStuck) { 1627 commitStuckCycle := commitStuckCycle + 1.U 1628 }.elsewhen(!commitStuck && RegNext(commitStuck)) { 1629 commitStuckCycle := 0.U 1630 } 1631 // check if stuck > 2^maxCommitStuckCycle 1632 val commitStuck_overflow = commitStuckCycle.andR 1633 val criticalErrors = Seq( 1634 ("rob_commit_stuck ", commitStuck_overflow), 1635 ) 1636 generateCriticalErrors() 1637 1638 1639 // dontTouch for debug 1640 if (backendParams.debugEn) { 1641 dontTouch(enqPtrVec) 1642 dontTouch(deqPtrVec) 1643 dontTouch(robEntries) 1644 dontTouch(robDeqGroup) 1645 dontTouch(robBanks) 1646 dontTouch(robBanksRaddrThisLine) 1647 dontTouch(robBanksRaddrNextLine) 1648 dontTouch(robBanksRdataThisLine) 1649 dontTouch(robBanksRdataNextLine) 1650 dontTouch(robBanksRdataThisLineUpdate) 1651 dontTouch(robBanksRdataNextLineUpdate) 1652 dontTouch(needUpdate) 1653 val exceptionWBsVec = MixedVecInit(exceptionWBs) 1654 dontTouch(exceptionWBsVec) 1655 dontTouch(commit_wDeqGroup) 1656 dontTouch(commit_vDeqGroup) 1657 dontTouch(commitSizeSumSeq) 1658 dontTouch(walkSizeSumSeq) 1659 dontTouch(commitSizeSumCond) 1660 dontTouch(walkSizeSumCond) 1661 dontTouch(commitSizeSum) 1662 dontTouch(walkSizeSum) 1663 dontTouch(realDestSizeSeq) 1664 dontTouch(walkDestSizeSeq) 1665 dontTouch(io.commits) 1666 dontTouch(commitIsVTypeVec) 1667 dontTouch(walkIsVTypeVec) 1668 dontTouch(commitValidThisLine) 1669 dontTouch(commitReadAddr_next) 1670 dontTouch(donotNeedWalk) 1671 dontTouch(walkPtrVec_next) 1672 dontTouch(walkPtrVec) 1673 dontTouch(deqPtrVec_next) 1674 dontTouch(deqPtrVecForWalk) 1675 dontTouch(snapPtrReadBank) 1676 dontTouch(snapPtrVecForWalk) 1677 dontTouch(shouldWalkVec) 1678 dontTouch(walkFinished) 1679 dontTouch(changeBankAddrToDeqPtr) 1680 } 1681 if (env.EnableDifftest) { 1682 io.commits.info.map(info => dontTouch(info.debug_pc.get)) 1683 } 1684} 1685