1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38 override def cloneType = (new RobPtr).asInstanceOf[this.type] 39} 40 41object RobPtr { 42 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 43 val ptr = Wire(new RobPtr) 44 ptr.flag := f 45 ptr.value := v 46 ptr 47 } 48} 49 50class RobCSRIO(implicit p: Parameters) extends XSBundle { 51 val intrBitSet = Input(Bool()) 52 val trapTarget = Input(UInt(VAddrBits.W)) 53 val isXRet = Input(Bool()) 54 55 val fflags = Output(Valid(UInt(5.W))) 56 val dirty_fs = Output(Bool()) 57 val perfinfo = new Bundle { 58 val retiredInstr = Output(UInt(3.W)) 59 } 60} 61 62class RobLsqIO(implicit p: Parameters) extends XSBundle { 63 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 65 val pendingld = Output(Bool()) 66 val pendingst = Output(Bool()) 67 val commit = Output(Bool()) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val interrupt_safe = Input(Bool()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() // TODO add frontend hit beneath 165 val crossPageIPFFix = Bool() 166 val trigger = new TriggerCf 167 168// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 169// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 170 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 171 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 172 // only exceptions are allowed to writeback when enqueue 173 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 174} 175 176class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 177 val io = IO(new Bundle { 178 val redirect = Input(Valid(new Redirect)) 179 val flush = Input(Bool()) 180 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 181 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 182 val out = ValidIO(new RobExceptionInfo) 183 val state = ValidIO(new RobExceptionInfo) 184 }) 185 186 val current = Reg(Valid(new RobExceptionInfo)) 187 188 // orR the exceptionVec 189 val lastCycleFlush = RegNext(io.flush) 190 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 191 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 192 193 // s0: compare wb(1),wb(2) and wb(3),wb(4) 194 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 195 val csr_wb_bits = io.wb(0).bits 196 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 197 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 198 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 199 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 200 201 // s1: compare last four and current flush 202 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 203 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 204 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 205 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 206 val s1_out_bits = RegNext(compare_bits) 207 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 208 209 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 210 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 211 212 // s2: compare the input exception with the current one 213 // priorities: 214 // (1) system reset 215 // (2) current is valid: flush, remain, merge, update 216 // (3) current is not valid: s1 or enq 217 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 218 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 219 when (reset.asBool) { 220 current.valid := false.B 221 }.elsewhen (current.valid) { 222 when (current_flush) { 223 current.valid := Mux(s1_flush, false.B, s1_out_valid) 224 } 225 when (s1_out_valid && !s1_flush) { 226 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 227 current.bits := s1_out_bits 228 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 229 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 230 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 231 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 232 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 233 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 234 } 235 } 236 }.elsewhen (s1_out_valid && !s1_flush) { 237 current.valid := true.B 238 current.bits := s1_out_bits 239 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 240 current.valid := true.B 241 current.bits := enq_bits 242 } 243 244 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 245 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 246 io.state := current 247 248} 249 250class RobFlushInfo(implicit p: Parameters) extends XSBundle { 251 val ftqIdx = new FtqPtr 252 val robIdx = new RobPtr 253 val ftqOffset = UInt(log2Up(PredictWidth).W) 254 val replayInst = Bool() 255} 256 257class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 258 259 lazy val module = new RobImp(this) 260 261 override def generateWritebackIO( 262 thisMod: Option[HasWritebackSource] = None, 263 thisModImp: Option[HasWritebackSourceImp] = None 264 ): Unit = { 265 val sources = writebackSinksImp(thisMod, thisModImp) 266 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 267 } 268} 269 270class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 271 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 272 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 273 val numWbPorts = wbExuConfigs.map(_.length) 274 275 val io = IO(new Bundle() { 276 val hartId = Input(UInt(8.W)) 277 val redirect = Input(Valid(new Redirect)) 278 val enq = new RobEnqIO 279 val flushOut = ValidIO(new Redirect) 280 val exception = ValidIO(new ExceptionInfo) 281 // exu + brq 282 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 283 val commits = new RobCommitIO 284 val lsq = new RobLsqIO 285 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 286 val robDeqPtr = Output(new RobPtr) 287 val csr = new RobCSRIO 288 val robFull = Output(Bool()) 289 }) 290 291 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 292 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 293 } 294 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 295 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 296 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 297 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 298 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 299 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 300 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 301 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 302 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 303 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 304 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 305 306 307 val exuWriteback = exuWbPorts.map(_._2) 308 val stdWriteback = stdWbPorts.map(_._2) 309 310 // instvalid field 311 val valid = Mem(RobSize, Bool()) 312 // writeback status 313 val writebacked = Mem(RobSize, Bool()) 314 val store_data_writebacked = Mem(RobSize, Bool()) 315 // data for redirect, exception, etc. 316 val flagBkup = Mem(RobSize, Bool()) 317 // some instructions are not allowed to trigger interrupts 318 // They have side effects on the states of the processor before they write back 319 val interrupt_safe = Mem(RobSize, Bool()) 320 321 // data for debug 322 // Warn: debug_* prefix should not exist in generated verilog. 323 val debug_microOp = Mem(RobSize, new MicroOp) 324 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 325 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 326 327 // pointers 328 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 329 val enqPtr = Wire(new RobPtr) 330 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 331 332 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 333 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 334 val allowEnqueue = RegInit(true.B) 335 336 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 337 val deqPtr = deqPtrVec(0) 338 val walkPtr = walkPtrVec(0) 339 340 val isEmpty = enqPtr === deqPtr 341 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 342 343 /** 344 * states of Rob 345 */ 346 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 347 val state = RegInit(s_idle) 348 349 /** 350 * Data Modules 351 * 352 * CommitDataModule: data from dispatch 353 * (1) read: commits/walk/exception 354 * (2) write: enqueue 355 * 356 * WritebackData: data from writeback 357 * (1) read: commits/walk/exception 358 * (2) write: write back from exe units 359 */ 360 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 361 val dispatchDataRead = dispatchData.io.rdata 362 363 val exceptionGen = Module(new ExceptionGen) 364 val exceptionDataRead = exceptionGen.io.state 365 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 366 367 io.robDeqPtr := deqPtr 368 369 /** 370 * Enqueue (from dispatch) 371 */ 372 // special cases 373 val hasBlockBackward = RegInit(false.B) 374 val hasNoSpecExec = RegInit(false.B) 375 val doingSvinval = RegInit(false.B) 376 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 377 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 378 when (isEmpty) { hasBlockBackward:= false.B } 379 // When any instruction commits, hasNoSpecExec should be set to false.B 380 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 381 382 io.enq.canAccept := allowEnqueue && !hasBlockBackward 383 io.enq.resp := enqPtrVec 384 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 385 val timer = GTimer() 386 for (i <- 0 until RenameWidth) { 387 // we don't check whether io.redirect is valid here since redirect has higher priority 388 when (canEnqueue(i)) { 389 val enqUop = io.enq.req(i).bits 390 // store uop in data module and debug_microOp Vec 391 debug_microOp(enqPtrVec(i).value) := enqUop 392 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 393 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 394 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 395 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 396 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 397 when (enqUop.ctrl.blockBackward) { 398 hasBlockBackward := true.B 399 } 400 when (enqUop.ctrl.noSpecExec) { 401 hasNoSpecExec := true.B 402 } 403 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 404 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 405 when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 406 { 407 doingSvinval := true.B 408 } 409 // the end instruction of Svinval enqs so clear doingSvinval 410 when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 411 { 412 doingSvinval := false.B 413 } 414 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 415 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 416 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 417 } 418 } 419 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 420 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 421 422 // debug info for enqueue (dispatch) 423 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 424 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 425 426 427 /** 428 * Writeback (from execution units) 429 */ 430 for (wb <- exuWriteback) { 431 when (wb.valid) { 432 val wbIdx = wb.bits.uop.robIdx.value 433 debug_exuData(wbIdx) := wb.bits.data 434 debug_exuDebug(wbIdx) := wb.bits.debug 435 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 436 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 437 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 438 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 439 440 val debug_Uop = debug_microOp(wbIdx) 441 XSInfo(true.B, 442 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 443 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 444 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 445 ) 446 } 447 } 448 val writebackNum = PopCount(exuWriteback.map(_.valid)) 449 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 450 451 452 /** 453 * RedirectOut: Interrupt and Exceptions 454 */ 455 val deqDispatchData = dispatchDataRead(0) 456 val debug_deqUop = debug_microOp(deqPtr.value) 457 458 val intrBitSetReg = RegNext(io.csr.intrBitSet) 459 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 460 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 461 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 462 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 463 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 464 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 465 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 466 467 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 468 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 469 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 470 471 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 472 473 // io.flushOut will trigger redirect at the next cycle. 474 // Block any redirect or commit at the next cycle. 475 val lastCycleFlush = RegNext(io.flushOut.valid) 476 477 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 478 io.flushOut.bits := DontCare 479 io.flushOut.bits.robIdx := deqPtr 480 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 481 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 482 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 483 io.flushOut.bits.interrupt := true.B 484 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 485 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 486 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 487 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 488 489 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 490 io.exception.valid := RegNext(exceptionHappen) 491 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 492 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 493 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 494 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 495 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 496 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 497 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 498 499 XSDebug(io.flushOut.valid, 500 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 501 p"excp $exceptionEnable flushPipe $isFlushPipe " + 502 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 503 504 505 /** 506 * Commits (and walk) 507 * They share the same width. 508 */ 509 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 510 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 511 val walkFinished = walkCounter <= CommitWidth.U 512 513 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 514 require(RenameWidth <= CommitWidth) 515 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 516 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 517 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 518 usedSpaceForMPR := io.enq.needAlloc 519 extraSpaceForMPR := dispatchData.io.wdata 520 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 521 } 522 523 // wiring to csr 524 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 525 val v = io.commits.valid(i) 526 val info = io.commits.info(i) 527 (v & info.wflags, v & info.fpWen) 528 }).unzip 529 val fflags = Wire(Valid(UInt(5.W))) 530 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 531 fflags.bits := wflags.zip(fflagsDataRead).map({ 532 case (w, f) => Mux(w, f, 0.U) 533 }).reduce(_|_) 534 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 535 536 // when mispredict branches writeback, stop commit in the next 2 cycles 537 // TODO: don't check all exu write back 538 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 539 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 540 ))).orR() 541 val misPredBlockCounter = Reg(UInt(3.W)) 542 misPredBlockCounter := Mux(misPredWb, 543 "b111".U, 544 misPredBlockCounter >> 1.U 545 ) 546 val misPredBlock = misPredBlockCounter(0) 547 548 io.commits.isWalk := state =/= s_idle 549 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 550 // store will be commited iff both sta & std have been writebacked 551 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 552 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 553 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 554 val allowOnlyOneCommit = commit_exception || intrBitSetReg 555 // for instructions that may block others, we don't allow them to commit 556 for (i <- 0 until CommitWidth) { 557 // defaults: state === s_idle and instructions commit 558 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 559 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 560 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 561 io.commits.info(i) := dispatchDataRead(i) 562 563 when (state === s_walk) { 564 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 565 }.elsewhen(state === s_extrawalk) { 566 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 567 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 568 } 569 570 XSInfo(state === s_idle && io.commits.valid(i), 571 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 572 debug_microOp(deqPtrVec(i).value).cf.pc, 573 io.commits.info(i).rfWen, 574 io.commits.info(i).ldest, 575 io.commits.info(i).pdest, 576 io.commits.info(i).old_pdest, 577 debug_exuData(deqPtrVec(i).value), 578 fflagsDataRead(i) 579 ) 580 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 581 debug_microOp(walkPtrVec(i).value).cf.pc, 582 io.commits.info(i).rfWen, 583 io.commits.info(i).ldest, 584 debug_exuData(walkPtrVec(i).value) 585 ) 586 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 587 io.commits.info(i).rfWen, 588 io.commits.info(i).ldest 589 ) 590 } 591 if (env.EnableDifftest) { 592 io.commits.info.map(info => dontTouch(info.pc)) 593 } 594 595 // sync fflags/dirty_fs to csr 596 io.csr.fflags := RegNext(fflags) 597 io.csr.dirty_fs := RegNext(dirty_fs) 598 599 // commit branch to brq 600 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 601 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 602 603 // commit load/store to lsq 604 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 605 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 606 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 607 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 608 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 609 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 610 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 611 612 /** 613 * state changes 614 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 615 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 616 * (3) walk: when walking comes to the end, switch to s_walk 617 * (4) s_extrawalk to s_walk 618 */ 619 val state_next = Mux(io.redirect.valid, 620 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 621 Mux(state === s_walk && walkFinished, 622 s_idle, 623 Mux(state === s_extrawalk, s_walk, state) 624 ) 625 ) 626 state := state_next 627 628 /** 629 * pointers and counters 630 */ 631 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 632 deqPtrGenModule.io.state := state 633 deqPtrGenModule.io.deq_v := commit_v 634 deqPtrGenModule.io.deq_w := commit_w 635 deqPtrGenModule.io.exception_state := exceptionDataRead 636 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 637 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 638 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 639 640 deqPtrGenModule.io.misPredBlock := misPredBlock 641 deqPtrGenModule.io.isReplaying := isReplaying 642 deqPtrVec := deqPtrGenModule.io.out 643 val deqPtrVec_next = deqPtrGenModule.io.next_out 644 645 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 646 enqPtrGenModule.io.redirect := io.redirect 647 enqPtrGenModule.io.allowEnqueue := allowEnqueue 648 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 649 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 650 enqPtr := enqPtrGenModule.io.out 651 652 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 653 // next walkPtrVec: 654 // (1) redirect occurs: update according to state 655 // (2) walk: move backwards 656 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 657 Mux(state === s_walk, 658 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 659 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 660 ), 661 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 662 ) 663 walkPtrVec := walkPtrVec_next 664 665 val lastCycleRedirect = RegNext(io.redirect.valid) 666 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 667 val commitCnt = PopCount(io.commits.valid) 668 validCounter := Mux(state === s_idle, 669 (validCounter - commitCnt) + dispatchNum, 670 trueValidCounter 671 ) 672 673 allowEnqueue := Mux(state === s_idle, 674 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 675 trueValidCounter <= (RobSize - RenameWidth).U 676 ) 677 678 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 679 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 680 when (io.redirect.valid) { 681 walkCounter := Mux(state === s_walk, 682 // NOTE: +& is used here because: 683 // When rob is full and the head instruction causes an exception, 684 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 685 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 686 // Since exceptions flush the instruction itself, flushItSelf is true.B. 687 // Previously we use `+` to count the walk distance and it causes overflows 688 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 689 // The width of walkCounter also needs to be changed. 690 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 691 redirectWalkDistance +& io.redirect.bits.flushItself() 692 ) 693 }.elsewhen (state === s_walk) { 694 walkCounter := walkCounter - commitCnt 695 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 696 } 697 698 699 /** 700 * States 701 * We put all the stage bits changes here. 702 703 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 704 * All states: (1) valid; (2) writebacked; (3) flagBkup 705 */ 706 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 707 708 // enqueue logic writes 6 valid 709 for (i <- 0 until RenameWidth) { 710 when (canEnqueue(i) && !io.redirect.valid) { 711 valid(enqPtrVec(i).value) := true.B 712 } 713 } 714 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 715 for (i <- 0 until CommitWidth) { 716 when (io.commits.valid(i) && state =/= s_extrawalk) { 717 valid(commitReadAddr(i)) := false.B 718 } 719 } 720 // reset: when exception, reset all valid to false 721 when (reset.asBool) { 722 for (i <- 0 until RobSize) { 723 valid(i) := false.B 724 } 725 } 726 727 // status field: writebacked 728 // enqueue logic set 6 writebacked to false 729 for (i <- 0 until RenameWidth) { 730 when (canEnqueue(i)) { 731 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 732 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 733 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !enqHasException && !enqHasTriggerHit 734 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 735 store_data_writebacked(enqPtrVec(i).value) := !isStu 736 } 737 } 738 when (exceptionGen.io.out.valid) { 739 val wbIdx = exceptionGen.io.out.bits.robIdx.value 740 writebacked(wbIdx) := true.B 741 store_data_writebacked(wbIdx) := true.B 742 } 743 // writeback logic set numWbPorts writebacked to true 744 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 745 when (wb.valid) { 746 val wbIdx = wb.bits.uop.robIdx.value 747 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 748 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 749 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 750 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 751 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 752 writebacked(wbIdx) := !block_wb 753 } 754 } 755 // store data writeback logic mark store as data_writebacked 756 for (wb <- stdWriteback) { 757 when(RegNext(wb.valid)) { 758 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 759 } 760 } 761 762 // flagBkup 763 // enqueue logic set 6 flagBkup at most 764 for (i <- 0 until RenameWidth) { 765 when (canEnqueue(i)) { 766 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 767 } 768 } 769 770 // interrupt_safe 771 for (i <- 0 until RenameWidth) { 772 // We RegNext the updates for better timing. 773 // Note that instructions won't change the system's states in this cycle. 774 when (RegNext(canEnqueue(i))) { 775 // For now, we allow non-load-store instructions to trigger interrupts 776 // For MMIO instructions, they should not trigger interrupts since they may 777 // be sent to lower level before it writes back. 778 // However, we cannot determine whether a load/store instruction is MMIO. 779 // Thus, we don't allow load/store instructions to trigger an interrupt. 780 // TODO: support non-MMIO load-store instructions to trigger interrupts 781 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 782 interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts) 783 } 784 } 785 786 /** 787 * read and write of data modules 788 */ 789 val commitReadAddr_next = Mux(state_next === s_idle, 790 VecInit(deqPtrVec_next.map(_.value)), 791 VecInit(walkPtrVec_next.map(_.value)) 792 ) 793 dispatchData.io.wen := canEnqueue 794 dispatchData.io.waddr := enqPtrVec.map(_.value) 795 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 796 wdata.ldest := req.ctrl.ldest 797 wdata.rfWen := req.ctrl.rfWen 798 wdata.fpWen := req.ctrl.fpWen 799 wdata.wflags := req.ctrl.fpu.wflags 800 wdata.commitType := req.ctrl.commitType 801 wdata.pdest := req.pdest 802 wdata.old_pdest := req.old_pdest 803 wdata.ftqIdx := req.cf.ftqPtr 804 wdata.ftqOffset := req.cf.ftqOffset 805 wdata.pc := req.cf.pc 806 } 807 dispatchData.io.raddr := commitReadAddr_next 808 809 exceptionGen.io.redirect <> io.redirect 810 exceptionGen.io.flush := io.flushOut.valid 811 for (i <- 0 until RenameWidth) { 812 exceptionGen.io.enq(i).valid := canEnqueue(i) 813 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 814 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 815 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 816 exceptionGen.io.enq(i).bits.replayInst := false.B 817 assert(io.enq.req(i).bits.ctrl.replayInst === false.B) 818 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 819 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 820 exceptionGen.io.enq(i).bits.trigger.clear() 821 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 822 } 823 824 println(s"ExceptionGen:") 825 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 826 require(exceptionCases.length == exceptionGen.io.wb.length) 827 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 828 exc_wb.valid := wb.valid 829 exc_wb.bits.robIdx := wb.bits.uop.robIdx 830 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 831 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 832 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 833 exc_wb.bits.singleStep := false.B 834 exc_wb.bits.crossPageIPFFix := false.B 835 // TODO: make trigger configurable 836 exc_wb.bits.trigger.clear() 837 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 838 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 839 s"flushPipe ${configs.exists(_.flushPipe)}, " + 840 s"replayInst ${configs.exists(_.replayInst)}") 841 } 842 843 val fflags_wb = fflagsPorts.map(_._2) 844 val fflagsDataModule = Module(new SyncDataModuleTemplate( 845 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 846 ) 847 for(i <- fflags_wb.indices){ 848 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 849 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 850 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 851 } 852 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 853 fflagsDataRead := fflagsDataModule.io.rdata 854 855 856 val instrCnt = RegInit(0.U(64.W)) 857 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 858 val trueCommitCnt = commitCnt +& fuseCommitCnt 859 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 860 instrCnt := instrCnt + retireCounter 861 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 862 io.robFull := !allowEnqueue 863 864 /** 865 * debug info 866 */ 867 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 868 XSDebug("") 869 for(i <- 0 until RobSize){ 870 XSDebug(false, !valid(i), "-") 871 XSDebug(false, valid(i) && writebacked(i), "w") 872 XSDebug(false, valid(i) && !writebacked(i), "v") 873 } 874 XSDebug(false, true.B, "\n") 875 876 for(i <- 0 until RobSize) { 877 if(i % 4 == 0) XSDebug("") 878 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 879 XSDebug(false, !valid(i), "- ") 880 XSDebug(false, valid(i) && writebacked(i), "w ") 881 XSDebug(false, valid(i) && !writebacked(i), "v ") 882 if(i % 4 == 3) XSDebug(false, true.B, "\n") 883 } 884 885 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 886 887 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 888 XSPerfAccumulate("clock_cycle", 1.U) 889 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 890 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 891 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 892 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 893 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 894 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 895 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 896 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 897 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 898 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 899 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 900 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 901 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 902 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 903 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 904 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 905 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 906 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 907 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 908 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 909 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 910 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 911 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 912 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 913 val deqUopCommitType = io.commits.info(0).commitType 914 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 915 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 916 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 917 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 918 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 919 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 920 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 921 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 922 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 923 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 924 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 925 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 926 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 927 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 928 } 929 for (fuType <- FuType.functionNameMap.keys) { 930 val fuName = FuType.functionNameMap(fuType) 931 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 932 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 933 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 934 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 935 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 936 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 937 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 938 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 939 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 940 if (fuType == FuType.fmac.litValue()) { 941 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 942 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 943 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 944 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 945 } 946 } 947 948 //difftest signals 949 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 950 951 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 952 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 953 954 for(i <- 0 until CommitWidth) { 955 val idx = deqPtrVec(i).value 956 wdata(i) := debug_exuData(idx) 957 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 958 } 959 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 960 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 961 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 962 963 if (env.EnableDifftest) { 964 for (i <- 0 until CommitWidth) { 965 val difftest = Module(new DifftestInstrCommit) 966 difftest.io.clock := clock 967 difftest.io.coreid := io.hartId 968 difftest.io.index := i.U 969 970 val ptr = deqPtrVec(i).value 971 val uop = commitDebugUop(i) 972 val exuOut = debug_exuDebug(ptr) 973 val exuData = debug_exuData(ptr) 974 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 975 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 976 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 977 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 978 // when committing an eliminated move instruction, 979 // we must make sure that skip is properly set to false (output from EXU is random value) 980 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 981 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 982 difftest.io.wen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 983 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 984 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 985 986 // runahead commit hint 987 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 988 runahead_commit.io.clock := clock 989 runahead_commit.io.coreid := io.hartId 990 runahead_commit.io.index := i.U 991 runahead_commit.io.valid := difftest.io.valid && 992 (commitBranchValid(i) || commitIsStore(i)) 993 // TODO: is branch or store 994 runahead_commit.io.pc := difftest.io.pc 995 } 996 } 997 else if (env.AlwaysBasicDiff) { 998 // These are the structures used by difftest only and should be optimized after synthesis. 999 val dt_eliminatedMove = Mem(RobSize, Bool()) 1000 val dt_isRVC = Mem(RobSize, Bool()) 1001 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1002 for (i <- 0 until RenameWidth) { 1003 when (canEnqueue(i)) { 1004 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1005 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1006 } 1007 } 1008 for (wb <- exuWriteback) { 1009 when (wb.valid) { 1010 val wbIdx = wb.bits.uop.robIdx.value 1011 dt_exuDebug(wbIdx) := wb.bits.debug 1012 } 1013 } 1014 // Always instantiate basic difftest modules. 1015 for (i <- 0 until CommitWidth) { 1016 val commitInfo = io.commits.info(i) 1017 val ptr = deqPtrVec(i).value 1018 val exuOut = dt_exuDebug(ptr) 1019 val eliminatedMove = dt_eliminatedMove(ptr) 1020 val isRVC = dt_isRVC(ptr) 1021 1022 val difftest = Module(new DifftestBasicInstrCommit) 1023 difftest.io.clock := clock 1024 difftest.io.coreid := io.hartId 1025 difftest.io.index := i.U 1026 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1027 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1028 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1029 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1030 difftest.io.wen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1031 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1032 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1033 } 1034 } 1035 1036 if (env.EnableDifftest) { 1037 for (i <- 0 until CommitWidth) { 1038 val difftest = Module(new DifftestLoadEvent) 1039 difftest.io.clock := clock 1040 difftest.io.coreid := io.hartId 1041 difftest.io.index := i.U 1042 1043 val ptr = deqPtrVec(i).value 1044 val uop = commitDebugUop(i) 1045 val exuOut = debug_exuDebug(ptr) 1046 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1047 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1048 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1049 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1050 } 1051 } 1052 1053 // Always instantiate basic difftest modules. 1054 if (env.EnableDifftest) { 1055 val dt_isXSTrap = Mem(RobSize, Bool()) 1056 for (i <- 0 until RenameWidth) { 1057 when (canEnqueue(i)) { 1058 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1059 } 1060 } 1061 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1062 val hitTrap = trapVec.reduce(_||_) 1063 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1064 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1065 val difftest = Module(new DifftestTrapEvent) 1066 difftest.io.clock := clock 1067 difftest.io.coreid := io.hartId 1068 difftest.io.valid := hitTrap 1069 difftest.io.code := trapCode 1070 difftest.io.pc := trapPC 1071 difftest.io.cycleCnt := timer 1072 difftest.io.instrCnt := instrCnt 1073 } 1074 else if (env.AlwaysBasicDiff) { 1075 val dt_isXSTrap = Mem(RobSize, Bool()) 1076 for (i <- 0 until RenameWidth) { 1077 when (canEnqueue(i)) { 1078 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1079 } 1080 } 1081 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1082 val hitTrap = trapVec.reduce(_||_) 1083 val difftest = Module(new DifftestBasicTrapEvent) 1084 difftest.io.clock := clock 1085 difftest.io.coreid := io.hartId 1086 difftest.io.valid := hitTrap 1087 difftest.io.cycleCnt := timer 1088 difftest.io.instrCnt := instrCnt 1089 } 1090 1091 val perfEvents = Seq( 1092 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1093 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1094 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1095 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1096 ("rob_commitUop ", ifCommit(commitCnt) ), 1097 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1098 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1099 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1100 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1101 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1102 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1103 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1104 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1105 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1106 ("rob_1_4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1107 ("rob_2_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1108 ("rob_3_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1109 ("rob_4_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1110 ) 1111 generatePerfEvent() 1112} 1113