1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 23import utils._ 24import utility._ 25import xiangshan._ 26import xiangshan.backend.decode.{DecodeStage, FusionDecoder, ImmUnion} 27import xiangshan.backend.dispatch.{Dispatch, Dispatch2Rs, DispatchQueue} 28import xiangshan.backend.fu.PFEvent 29import xiangshan.backend.rename.{Rename, RenameTableWrapper} 30import xiangshan.backend.rob.{Rob, RobCSRIO, RobLsqIO} 31import xiangshan.frontend.{FtqRead, Ftq_RF_Components} 32import xiangshan.mem.mdp.{LFST, SSIT, WaitTable} 33import xiangshan.ExceptionNO._ 34import xiangshan.backend.exu.ExuConfig 35import xiangshan.mem.{LsqEnqCtrl, LsqEnqIO} 36 37class CtrlToFtqIO(implicit p: Parameters) extends XSBundle { 38 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 39 val rob_commits = Vec(CommitWidth, Valid(new RobCommitInfo)) 40 val redirect = Valid(new Redirect) 41} 42 43class RedirectGenerator(implicit p: Parameters) extends XSModule 44 with HasCircularQueuePtrHelper { 45 46 class RedirectGeneratorIO(implicit p: Parameters) extends XSBundle { 47 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 48 val hartId = Input(UInt(8.W)) 49 val exuMispredict = Vec(numRedirect, Flipped(ValidIO(new ExuOutput))) 50 val loadReplay = Flipped(ValidIO(new Redirect)) 51 val flush = Input(Bool()) 52 val redirectPcRead = new FtqRead(UInt(VAddrBits.W)) 53 val stage2Redirect = ValidIO(new Redirect) 54 val stage3Redirect = ValidIO(new Redirect) 55 val memPredUpdate = Output(new MemPredUpdateReq) 56 val memPredPcRead = new FtqRead(UInt(VAddrBits.W)) // read req send form stage 2 57 val isMisspreRedirect = Output(Bool()) 58 } 59 val io = IO(new RedirectGeneratorIO) 60 /* 61 LoadQueue Jump ALU0 ALU1 ALU2 ALU3 exception Stage1 62 | | | | | | | 63 |============= reg & compare =====| | ======== 64 | | 65 | | 66 | | Stage2 67 | | 68 redirect (flush backend) | 69 | | 70 === reg === | ======== 71 | | 72 |----- mux (exception first) -----| Stage3 73 | 74 redirect (send to frontend) 75 */ 76 def selectOldestRedirect(xs: Seq[Valid[Redirect]]): Vec[Bool] = { 77 val compareVec = (0 until xs.length).map(i => (0 until i).map(j => isAfter(xs(j).bits.robIdx, xs(i).bits.robIdx))) 78 val resultOnehot = VecInit((0 until xs.length).map(i => Cat((0 until xs.length).map(j => 79 (if (j < i) !xs(j).valid || compareVec(i)(j) 80 else if (j == i) xs(i).valid 81 else !xs(j).valid || !compareVec(j)(i)) 82 )).andR)) 83 resultOnehot 84 } 85 86 def getRedirect(exuOut: Valid[ExuOutput]): ValidIO[Redirect] = { 87 val redirect = Wire(Valid(new Redirect)) 88 redirect.valid := exuOut.valid && exuOut.bits.redirect.cfiUpdate.isMisPred 89 redirect.bits := exuOut.bits.redirect 90 redirect 91 } 92 93 val jumpOut = io.exuMispredict.head 94 val allRedirect = VecInit(io.exuMispredict.map(x => getRedirect(x)) :+ io.loadReplay) 95 val oldestOneHot = selectOldestRedirect(allRedirect) 96 val needFlushVec = VecInit(allRedirect.map(_.bits.robIdx.needFlush(io.stage2Redirect) || io.flush)) 97 val oldestValid = VecInit(oldestOneHot.zip(needFlushVec).map{ case (v, f) => v && !f }).asUInt.orR 98 val oldestExuOutput = Mux1H(io.exuMispredict.indices.map(oldestOneHot), io.exuMispredict) 99 val oldestRedirect = Mux1H(oldestOneHot, allRedirect) 100 io.isMisspreRedirect := VecInit(io.exuMispredict.map(x => getRedirect(x).valid)).asUInt.orR 101 io.redirectPcRead.ptr := oldestRedirect.bits.ftqIdx 102 io.redirectPcRead.offset := oldestRedirect.bits.ftqOffset 103 104 val s1_jumpTarget = RegEnable(jumpOut.bits.redirect.cfiUpdate.target, jumpOut.valid) 105 val s1_imm12_reg = RegNext(oldestExuOutput.bits.uop.ctrl.imm(11, 0)) 106 val s1_pd = RegNext(oldestExuOutput.bits.uop.cf.pd) 107 val s1_redirect_bits_reg = RegNext(oldestRedirect.bits) 108 val s1_redirect_valid_reg = RegNext(oldestValid) 109 val s1_redirect_onehot = RegNext(oldestOneHot) 110 111 // stage1 -> stage2 112 io.stage2Redirect.valid := s1_redirect_valid_reg && !io.flush 113 io.stage2Redirect.bits := s1_redirect_bits_reg 114 115 val s1_isReplay = s1_redirect_onehot.last 116 val s1_isJump = s1_redirect_onehot.head 117 val real_pc = io.redirectPcRead.data 118 val brTarget = real_pc + SignExt(ImmUnion.B.toImm32(s1_imm12_reg), XLEN) 119 val snpc = real_pc + Mux(s1_pd.isRVC, 2.U, 4.U) 120 val target = Mux(s1_isReplay, 121 real_pc, // replay from itself 122 Mux(s1_redirect_bits_reg.cfiUpdate.taken, 123 Mux(s1_isJump, s1_jumpTarget, brTarget), 124 snpc 125 ) 126 ) 127 128 val stage2CfiUpdate = io.stage2Redirect.bits.cfiUpdate 129 stage2CfiUpdate.pc := real_pc 130 stage2CfiUpdate.pd := s1_pd 131 // stage2CfiUpdate.predTaken := s1_redirect_bits_reg.cfiUpdate.predTaken 132 stage2CfiUpdate.target := target 133 // stage2CfiUpdate.taken := s1_redirect_bits_reg.cfiUpdate.taken 134 // stage2CfiUpdate.isMisPred := s1_redirect_bits_reg.cfiUpdate.isMisPred 135 136 val s2_target = RegEnable(target, s1_redirect_valid_reg) 137 val s2_pc = RegEnable(real_pc, s1_redirect_valid_reg) 138 val s2_redirect_bits_reg = RegEnable(s1_redirect_bits_reg, s1_redirect_valid_reg) 139 val s2_redirect_valid_reg = RegNext(s1_redirect_valid_reg && !io.flush, init = false.B) 140 141 io.stage3Redirect.valid := s2_redirect_valid_reg 142 io.stage3Redirect.bits := s2_redirect_bits_reg 143 144 // get pc from ftq 145 // valid only if redirect is caused by load violation 146 // store_pc is used to update store set 147 val store_pc = io.memPredPcRead(s1_redirect_bits_reg.stFtqIdx, s1_redirect_bits_reg.stFtqOffset) 148 149 // update load violation predictor if load violation redirect triggered 150 io.memPredUpdate.valid := RegNext(s1_isReplay && s1_redirect_valid_reg, init = false.B) 151 // update wait table 152 io.memPredUpdate.waddr := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 153 io.memPredUpdate.wdata := true.B 154 // update store set 155 io.memPredUpdate.ldpc := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 156 // store pc is ready 1 cycle after s1_isReplay is judged 157 io.memPredUpdate.stpc := XORFold(store_pc(VAddrBits-1, 1), MemPredPCWidth) 158 159 // // recover runahead checkpoint if redirect 160 // if (!env.FPGAPlatform) { 161 // val runahead_redirect = Module(new DifftestRunaheadRedirectEvent) 162 // runahead_redirect.io.clock := clock 163 // runahead_redirect.io.coreid := io.hartId 164 // runahead_redirect.io.valid := io.stage3Redirect.valid 165 // runahead_redirect.io.pc := s2_pc // for debug only 166 // runahead_redirect.io.target_pc := s2_target // for debug only 167 // runahead_redirect.io.checkpoint_id := io.stage3Redirect.bits.debug_runahead_checkpoint_id // make sure it is right 168 // } 169} 170 171class CtrlBlock(dpExuConfigs: Seq[Seq[Seq[ExuConfig]]])(implicit p: Parameters) extends LazyModule 172 with HasWritebackSink with HasWritebackSource { 173 val rob = LazyModule(new Rob) 174 175 override def addWritebackSink(source: Seq[HasWritebackSource], index: Option[Seq[Int]]): HasWritebackSink = { 176 rob.addWritebackSink(Seq(this), Some(Seq(writebackSinks.length))) 177 super.addWritebackSink(source, index) 178 } 179 180 // duplicated dispatch2 here to avoid cross-module timing path loop. 181 val dispatch2 = dpExuConfigs.map(c => LazyModule(new Dispatch2Rs(c))) 182 lazy val module = new CtrlBlockImp(this) 183 184 override lazy val writebackSourceParams: Seq[WritebackSourceParams] = { 185 writebackSinksParams 186 } 187 override lazy val writebackSourceImp: HasWritebackSourceImp = module 188 189 override def generateWritebackIO( 190 thisMod: Option[HasWritebackSource] = None, 191 thisModImp: Option[HasWritebackSourceImp] = None 192 ): Unit = { 193 module.io.writeback.zip(writebackSinksImp(thisMod, thisModImp)).foreach(x => x._1 := x._2) 194 } 195} 196 197class CtrlBlockImp(outer: CtrlBlock)(implicit p: Parameters) extends LazyModuleImp(outer) 198 with HasXSParameter 199 with HasCircularQueuePtrHelper 200 with HasWritebackSourceImp 201 with HasPerfEvents 202{ 203 val writebackLengths = outer.writebackSinksParams.map(_.length) 204 205 val io = IO(new Bundle { 206 val hartId = Input(UInt(8.W)) 207 val cpu_halt = Output(Bool()) 208 val frontend = Flipped(new FrontendToCtrlIO) 209 // to exu blocks 210 val allocPregs = Vec(RenameWidth, Output(new ResetPregStateReq)) 211 val dispatch = Vec(3*dpParams.IntDqDeqWidth, DecoupledIO(new MicroOp)) 212 val rsReady = Vec(outer.dispatch2.map(_.module.io.out.length).sum, Input(Bool())) 213 val enqLsq = Flipped(new LsqEnqIO) 214 val lqCancelCnt = Input(UInt(log2Up(LoadQueueSize + 1).W)) 215 val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W)) 216 val sqDeq = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) 217 // from int block 218 val exuRedirect = Vec(exuParameters.AluCnt + exuParameters.JmpCnt, Flipped(ValidIO(new ExuOutput))) 219 val stIn = Vec(exuParameters.StuCnt, Flipped(ValidIO(new ExuInput))) 220 val memoryViolation = Flipped(ValidIO(new Redirect)) 221 val jumpPc = Output(UInt(VAddrBits.W)) 222 val jalr_target = Output(UInt(VAddrBits.W)) 223 val robio = new Bundle { 224 // to int block 225 val toCSR = new RobCSRIO 226 val exception = ValidIO(new ExceptionInfo) 227 // to mem block 228 val lsq = new RobLsqIO 229 } 230 val csrCtrl = Input(new CustomCSRCtrlIO) 231 val perfInfo = Output(new Bundle{ 232 val ctrlInfo = new Bundle { 233 val robFull = Input(Bool()) 234 val intdqFull = Input(Bool()) 235 val fpdqFull = Input(Bool()) 236 val lsdqFull = Input(Bool()) 237 } 238 }) 239 val writeback = MixedVec(writebackLengths.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 240 // redirect out 241 val redirect = ValidIO(new Redirect) 242 val debug_int_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 243 val debug_fp_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 244 }) 245 246 override def writebackSource: Option[Seq[Seq[Valid[ExuOutput]]]] = { 247 Some(io.writeback.map(writeback => { 248 val exuOutput = WireInit(writeback) 249 val timer = GTimer() 250 for ((wb_next, wb) <- exuOutput.zip(writeback)) { 251 wb_next.valid := RegNext(wb.valid && !wb.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu))) 252 wb_next.bits := RegNext(wb.bits) 253 wb_next.bits.uop.debugInfo.writebackTime := timer 254 } 255 exuOutput 256 })) 257 } 258 259 val decode = Module(new DecodeStage) 260 val fusionDecoder = Module(new FusionDecoder) 261 val rat = Module(new RenameTableWrapper) 262 val ssit = Module(new SSIT) 263 val waittable = Module(new WaitTable) 264 val rename = Module(new Rename) 265 val dispatch = Module(new Dispatch) 266 val intDq = Module(new DispatchQueue(dpParams.IntDqSize, RenameWidth, dpParams.IntDqDeqWidth)) 267 val fpDq = Module(new DispatchQueue(dpParams.FpDqSize, RenameWidth, dpParams.FpDqDeqWidth)) 268 val lsDq = Module(new DispatchQueue(dpParams.LsDqSize, RenameWidth, dpParams.LsDqDeqWidth)) 269 val redirectGen = Module(new RedirectGenerator) 270 // jumpPc (2) + redirects (1) + loadPredUpdate (1) + jalr_target (1) + robFlush (1) 271 val pcMem = Module(new SyncDataModuleTemplate(new Ftq_RF_Components, FtqSize, 6, 1, "BackendPC")) 272 val rob = outer.rob.module 273 274 pcMem.io.wen.head := RegNext(io.frontend.fromFtq.pc_mem_wen) 275 pcMem.io.waddr.head := RegNext(io.frontend.fromFtq.pc_mem_waddr) 276 pcMem.io.wdata.head := RegNext(io.frontend.fromFtq.pc_mem_wdata) 277 278 279 pcMem.io.raddr.last := rob.io.flushOut.bits.ftqIdx.value 280 val flushPC = pcMem.io.rdata.last.getPc(RegNext(rob.io.flushOut.bits.ftqOffset)) 281 282 val flushRedirect = Wire(Valid(new Redirect)) 283 flushRedirect.valid := RegNext(rob.io.flushOut.valid) 284 flushRedirect.bits := RegEnable(rob.io.flushOut.bits, rob.io.flushOut.valid) 285 286 val flushRedirectReg = Wire(Valid(new Redirect)) 287 flushRedirectReg.valid := RegNext(flushRedirect.valid, init = false.B) 288 flushRedirectReg.bits := RegEnable(flushRedirect.bits, flushRedirect.valid) 289 290 val stage2Redirect = Mux(flushRedirect.valid, flushRedirect, redirectGen.io.stage2Redirect) 291 // Redirect will be RegNext at ExuBlocks. 292 val redirectForExu = RegNextWithEnable(stage2Redirect) 293 294 val exuRedirect = io.exuRedirect.map(x => { 295 val valid = x.valid && x.bits.redirectValid 296 val killedByOlder = x.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)) 297 val delayed = Wire(Valid(new ExuOutput)) 298 delayed.valid := RegNext(valid && !killedByOlder, init = false.B) 299 delayed.bits := RegEnable(x.bits, x.valid) 300 delayed 301 }) 302 val loadReplay = Wire(Valid(new Redirect)) 303 loadReplay.valid := RegNext(io.memoryViolation.valid && 304 !io.memoryViolation.bits.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)), 305 init = false.B 306 ) 307 loadReplay.bits := RegEnable(io.memoryViolation.bits, io.memoryViolation.valid) 308 pcMem.io.raddr(2) := redirectGen.io.redirectPcRead.ptr.value 309 redirectGen.io.redirectPcRead.data := pcMem.io.rdata(2).getPc(RegNext(redirectGen.io.redirectPcRead.offset)) 310 pcMem.io.raddr(3) := redirectGen.io.memPredPcRead.ptr.value 311 redirectGen.io.memPredPcRead.data := pcMem.io.rdata(3).getPc(RegNext(redirectGen.io.memPredPcRead.offset)) 312 redirectGen.io.hartId := io.hartId 313 redirectGen.io.exuMispredict <> exuRedirect 314 redirectGen.io.loadReplay <> loadReplay 315 redirectGen.io.flush := flushRedirect.valid 316 317 val frontendFlushValid = DelayN(flushRedirect.valid, 5) 318 val frontendFlushBits = RegEnable(flushRedirect.bits, flushRedirect.valid) 319 // When ROB commits an instruction with a flush, we notify the frontend of the flush without the commit. 320 // Flushes to frontend may be delayed by some cycles and commit before flush causes errors. 321 // Thus, we make all flush reasons to behave the same as exceptions for frontend. 322 for (i <- 0 until CommitWidth) { 323 // why flushOut: instructions with flushPipe are not commited to frontend 324 // If we commit them to frontend, it will cause flush after commit, which is not acceptable by frontend. 325 val is_commit = rob.io.commits.commitValid(i) && rob.io.commits.isCommit && !rob.io.flushOut.valid 326 io.frontend.toFtq.rob_commits(i).valid := RegNext(is_commit) 327 io.frontend.toFtq.rob_commits(i).bits := RegEnable(rob.io.commits.info(i), is_commit) 328 } 329 io.frontend.toFtq.redirect.valid := frontendFlushValid || redirectGen.io.stage2Redirect.valid 330 io.frontend.toFtq.redirect.bits := Mux(frontendFlushValid, frontendFlushBits, redirectGen.io.stage2Redirect.bits) 331 // Be careful here: 332 // T0: flushRedirect.valid, exception.valid 333 // T1: csr.redirect.valid 334 // T2: csr.exception.valid 335 // T3: csr.trapTarget 336 // T4: ctrlBlock.trapTarget 337 // T5: io.frontend.toFtq.stage2Redirect.valid 338 val pc_from_csr = io.robio.toCSR.isXRet || DelayN(rob.io.exception.valid, 4) 339 val rob_flush_pc = RegEnable(Mux(flushRedirect.bits.flushItself(), 340 flushPC, // replay inst 341 flushPC + 4.U // flush pipe 342 ), flushRedirect.valid) 343 val flushTarget = Mux(pc_from_csr, io.robio.toCSR.trapTarget, rob_flush_pc) 344 when (frontendFlushValid) { 345 io.frontend.toFtq.redirect.bits.level := RedirectLevel.flush 346 io.frontend.toFtq.redirect.bits.cfiUpdate.target := RegNext(flushTarget) 347 } 348 349 350 val pendingRedirect = RegInit(false.B) 351 when (stage2Redirect.valid) { 352 pendingRedirect := true.B 353 }.elsewhen (RegNext(io.frontend.toFtq.redirect.valid)) { 354 pendingRedirect := false.B 355 } 356 357 if (env.EnableTopDown) { 358 val stage2Redirect_valid_when_pending = pendingRedirect && stage2Redirect.valid 359 360 val stage2_redirect_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect 361 val MissPredPending = RegInit(false.B); val branch_resteers_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->branch_resteers 362 val RobFlushPending = RegInit(false.B); val robFlush_bubble_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->robflush_bubble 363 val LdReplayPending = RegInit(false.B); val ldReplay_bubble_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->ldReplay_bubble 364 365 when(redirectGen.io.isMisspreRedirect) { MissPredPending := true.B } 366 when(flushRedirect.valid) { RobFlushPending := true.B } 367 when(redirectGen.io.loadReplay.valid) { LdReplayPending := true.B } 368 369 when (RegNext(io.frontend.toFtq.redirect.valid)) { 370 when(pendingRedirect) { stage2_redirect_cycles := true.B } 371 when(MissPredPending) { MissPredPending := false.B; branch_resteers_cycles := true.B } 372 when(RobFlushPending) { RobFlushPending := false.B; robFlush_bubble_cycles := true.B } 373 when(LdReplayPending) { LdReplayPending := false.B; ldReplay_bubble_cycles := true.B } 374 } 375 376 when(VecInit(decode.io.out.map(x => x.valid)).asUInt.orR){ 377 when(stage2_redirect_cycles) { stage2_redirect_cycles := false.B } 378 when(branch_resteers_cycles) { branch_resteers_cycles := false.B } 379 when(robFlush_bubble_cycles) { robFlush_bubble_cycles := false.B } 380 when(ldReplay_bubble_cycles) { ldReplay_bubble_cycles := false.B } 381 } 382 383 XSPerfAccumulate("stage2_redirect_cycles", stage2_redirect_cycles) 384 XSPerfAccumulate("branch_resteers_cycles", branch_resteers_cycles) 385 XSPerfAccumulate("robFlush_bubble_cycles", robFlush_bubble_cycles) 386 XSPerfAccumulate("ldReplay_bubble_cycles", ldReplay_bubble_cycles) 387 XSPerfAccumulate("s2Redirect_pend_cycles", stage2Redirect_valid_when_pending) 388 } 389 390 decode.io.in <> io.frontend.cfVec 391 decode.io.csrCtrl := RegNext(io.csrCtrl) 392 decode.io.intRat <> rat.io.intReadPorts 393 decode.io.fpRat <> rat.io.fpReadPorts 394 395 // memory dependency predict 396 // when decode, send fold pc to mdp 397 for (i <- 0 until DecodeWidth) { 398 val mdp_foldpc = Mux( 399 decode.io.out(i).fire, 400 decode.io.in(i).bits.foldpc, 401 rename.io.in(i).bits.cf.foldpc 402 ) 403 ssit.io.raddr(i) := mdp_foldpc 404 waittable.io.raddr(i) := mdp_foldpc 405 } 406 // currently, we only update mdp info when isReplay 407 ssit.io.update <> RegNext(redirectGen.io.memPredUpdate) 408 ssit.io.csrCtrl := RegNext(io.csrCtrl) 409 waittable.io.update <> RegNext(redirectGen.io.memPredUpdate) 410 waittable.io.csrCtrl := RegNext(io.csrCtrl) 411 412 // LFST lookup and update 413 val lfst = Module(new LFST) 414 lfst.io.redirect <> RegNext(io.redirect) 415 lfst.io.storeIssue <> RegNext(io.stIn) 416 lfst.io.csrCtrl <> RegNext(io.csrCtrl) 417 lfst.io.dispatch <> dispatch.io.lfst 418 419 rat.io.redirect := stage2Redirect.valid 420 rat.io.robCommits := rob.io.commits 421 rat.io.intRenamePorts := rename.io.intRenamePorts 422 rat.io.fpRenamePorts := rename.io.fpRenamePorts 423 rat.io.debug_int_rat <> io.debug_int_rat 424 rat.io.debug_fp_rat <> io.debug_fp_rat 425 426 // pipeline between decode and rename 427 for (i <- 0 until RenameWidth) { 428 // fusion decoder 429 val decodeHasException = io.frontend.cfVec(i).bits.exceptionVec(instrPageFault) || io.frontend.cfVec(i).bits.exceptionVec(instrAccessFault) 430 val disableFusion = decode.io.csrCtrl.singlestep || !decode.io.csrCtrl.fusion_enable 431 fusionDecoder.io.in(i).valid := io.frontend.cfVec(i).valid && !(decodeHasException || disableFusion) 432 fusionDecoder.io.in(i).bits := io.frontend.cfVec(i).bits.instr 433 if (i > 0) { 434 fusionDecoder.io.inReady(i - 1) := decode.io.out(i).ready 435 } 436 437 // Pipeline 438 val renamePipe = PipelineNext(decode.io.out(i), rename.io.in(i).ready, 439 stage2Redirect.valid || pendingRedirect) 440 renamePipe.ready := rename.io.in(i).ready 441 rename.io.in(i).valid := renamePipe.valid && !fusionDecoder.io.clear(i) 442 rename.io.in(i).bits := renamePipe.bits 443 rename.io.intReadPorts(i) := rat.io.intReadPorts(i).map(_.data) 444 rename.io.fpReadPorts(i) := rat.io.fpReadPorts(i).map(_.data) 445 rename.io.waittable(i) := RegEnable(waittable.io.rdata(i), decode.io.out(i).fire) 446 447 if (i < RenameWidth - 1) { 448 // fusion decoder sees the raw decode info 449 fusionDecoder.io.dec(i) := renamePipe.bits.ctrl 450 rename.io.fusionInfo(i) := fusionDecoder.io.info(i) 451 452 // update the first RenameWidth - 1 instructions 453 decode.io.fusion(i) := fusionDecoder.io.out(i).valid && rename.io.out(i).fire 454 when (fusionDecoder.io.out(i).valid) { 455 fusionDecoder.io.out(i).bits.update(rename.io.in(i).bits.ctrl) 456 // TODO: remove this dirty code for ftq update 457 val sameFtqPtr = rename.io.in(i).bits.cf.ftqPtr.value === rename.io.in(i + 1).bits.cf.ftqPtr.value 458 val ftqOffset0 = rename.io.in(i).bits.cf.ftqOffset 459 val ftqOffset1 = rename.io.in(i + 1).bits.cf.ftqOffset 460 val ftqOffsetDiff = ftqOffset1 - ftqOffset0 461 val cond1 = sameFtqPtr && ftqOffsetDiff === 1.U 462 val cond2 = sameFtqPtr && ftqOffsetDiff === 2.U 463 val cond3 = !sameFtqPtr && ftqOffset1 === 0.U 464 val cond4 = !sameFtqPtr && ftqOffset1 === 1.U 465 rename.io.in(i).bits.ctrl.commitType := Mux(cond1, 4.U, Mux(cond2, 5.U, Mux(cond3, 6.U, 7.U))) 466 XSError(!cond1 && !cond2 && !cond3 && !cond4, p"new condition $sameFtqPtr $ftqOffset0 $ftqOffset1\n") 467 } 468 } 469 } 470 471 rename.io.redirect <> stage2Redirect 472 rename.io.robCommits <> rob.io.commits 473 rename.io.ssit <> ssit.io.rdata 474 rename.io.debug_int_rat <> rat.io.debug_int_rat 475 rename.io.debug_fp_rat <> rat.io.debug_fp_rat 476 477 // pipeline between rename and dispatch 478 for (i <- 0 until RenameWidth) { 479 PipelineConnect(rename.io.out(i), dispatch.io.fromRename(i), dispatch.io.recv(i), stage2Redirect.valid) 480 } 481 482 dispatch.io.hartId := io.hartId 483 dispatch.io.redirect <> stage2Redirect 484 dispatch.io.enqRob <> rob.io.enq 485 dispatch.io.toIntDq <> intDq.io.enq 486 dispatch.io.toFpDq <> fpDq.io.enq 487 dispatch.io.toLsDq <> lsDq.io.enq 488 dispatch.io.allocPregs <> io.allocPregs 489 dispatch.io.singleStep := RegNext(io.csrCtrl.singlestep) 490 491 intDq.io.redirect <> redirectForExu 492 fpDq.io.redirect <> redirectForExu 493 lsDq.io.redirect <> redirectForExu 494 495 val dpqOut = intDq.io.deq ++ lsDq.io.deq ++ fpDq.io.deq 496 io.dispatch <> dpqOut 497 498 for (dp2 <- outer.dispatch2.map(_.module.io)) { 499 dp2.redirect := redirectForExu 500 if (dp2.readFpState.isDefined) { 501 dp2.readFpState.get := DontCare 502 } 503 if (dp2.readIntState.isDefined) { 504 dp2.readIntState.get := DontCare 505 } 506 if (dp2.enqLsq.isDefined) { 507 val lsqCtrl = Module(new LsqEnqCtrl) 508 lsqCtrl.io.redirect <> redirectForExu 509 lsqCtrl.io.enq <> dp2.enqLsq.get 510 lsqCtrl.io.lcommit := rob.io.lsq.lcommit 511 lsqCtrl.io.scommit := io.sqDeq 512 lsqCtrl.io.lqCancelCnt := io.lqCancelCnt 513 lsqCtrl.io.sqCancelCnt := io.sqCancelCnt 514 io.enqLsq <> lsqCtrl.io.enqLsq 515 } 516 } 517 for ((dp2In, i) <- outer.dispatch2.flatMap(_.module.io.in).zipWithIndex) { 518 dp2In.valid := dpqOut(i).valid 519 dp2In.bits := dpqOut(i).bits 520 // override ready here to avoid cross-module loop path 521 dpqOut(i).ready := dp2In.ready 522 } 523 for ((dp2Out, i) <- outer.dispatch2.flatMap(_.module.io.out).zipWithIndex) { 524 dp2Out.ready := io.rsReady(i) 525 } 526 527 val pingpong = RegInit(false.B) 528 pingpong := !pingpong 529 pcMem.io.raddr(0) := intDq.io.deqNext(0).cf.ftqPtr.value 530 pcMem.io.raddr(1) := intDq.io.deqNext(2).cf.ftqPtr.value 531 val jumpPcRead0 = pcMem.io.rdata(0).getPc(RegNext(intDq.io.deqNext(0).cf.ftqOffset)) 532 val jumpPcRead1 = pcMem.io.rdata(1).getPc(RegNext(intDq.io.deqNext(2).cf.ftqOffset)) 533 io.jumpPc := Mux(pingpong && (exuParameters.AluCnt > 2).B, jumpPcRead1, jumpPcRead0) 534 val jalrTargetReadPtr = Mux(pingpong && (exuParameters.AluCnt > 2).B, 535 io.dispatch(2).bits.cf.ftqPtr, 536 io.dispatch(0).bits.cf.ftqPtr) 537 pcMem.io.raddr(4) := (jalrTargetReadPtr + 1.U).value 538 val jalrTargetRead = pcMem.io.rdata(4).startAddr 539 val read_from_newest_entry = RegNext(jalrTargetReadPtr) === RegNext(io.frontend.fromFtq.newest_entry_ptr) 540 io.jalr_target := Mux(read_from_newest_entry, RegNext(io.frontend.fromFtq.newest_entry_target), jalrTargetRead) 541 542 rob.io.hartId := io.hartId 543 io.cpu_halt := DelayN(rob.io.cpu_halt, 5) 544 rob.io.redirect <> stage2Redirect 545 outer.rob.generateWritebackIO(Some(outer), Some(this)) 546 547 io.redirect <> stage2Redirect 548 549 // rob to int block 550 io.robio.toCSR <> rob.io.csr 551 // When wfi is disabled, it will not block ROB commit. 552 rob.io.csr.wfiEvent := io.robio.toCSR.wfiEvent 553 rob.io.wfi_enable := decode.io.csrCtrl.wfi_enable 554 io.robio.toCSR.perfinfo.retiredInstr <> RegNext(rob.io.csr.perfinfo.retiredInstr) 555 io.robio.exception := rob.io.exception 556 io.robio.exception.bits.uop.cf.pc := flushPC 557 558 // rob to mem block 559 io.robio.lsq <> rob.io.lsq 560 561 io.perfInfo.ctrlInfo.robFull := RegNext(rob.io.robFull) 562 io.perfInfo.ctrlInfo.intdqFull := RegNext(intDq.io.dqFull) 563 io.perfInfo.ctrlInfo.fpdqFull := RegNext(fpDq.io.dqFull) 564 io.perfInfo.ctrlInfo.lsdqFull := RegNext(lsDq.io.dqFull) 565 566 val pfevent = Module(new PFEvent) 567 pfevent.io.distribute_csr := RegNext(io.csrCtrl.distribute_csr) 568 val csrevents = pfevent.io.hpmevent.slice(8,16) 569 570 val perfinfo = IO(new Bundle(){ 571 val perfEventsRs = Input(Vec(NumRs, new PerfEvent)) 572 val perfEventsEu0 = Input(Vec(6, new PerfEvent)) 573 val perfEventsEu1 = Input(Vec(6, new PerfEvent)) 574 }) 575 576 val allPerfEvents = Seq(decode, rename, dispatch, intDq, fpDq, lsDq, rob).flatMap(_.getPerf) 577 val hpmEvents = allPerfEvents ++ perfinfo.perfEventsEu0 ++ perfinfo.perfEventsEu1 ++ perfinfo.perfEventsRs 578 val perfEvents = HPerfMonitor(csrevents, hpmEvents).getPerfEvents 579 generatePerfEvent() 580} 581