/aosp_15_r20/external/tensorflow/tensorflow/lite/kernels/ |
H A D | pooling.cc | 38 namespace pooling { namespace 471 static TfLiteRegistration r = {pooling::Init, pooling::Free, in Register_AVERAGE_POOL_REF() 472 pooling::GenericPrepare<pooling::kAverage>, in Register_AVERAGE_POOL_REF() 473 pooling::AverageEval<pooling::kReference>}; in Register_AVERAGE_POOL_REF() 478 static TfLiteRegistration r = {pooling::Init, pooling::Free, in Register_MAX_POOL_REF() 479 pooling::GenericPrepare<pooling::kMax>, in Register_MAX_POOL_REF() 480 pooling::MaxEval<pooling::kReference>}; in Register_MAX_POOL_REF() 485 static TfLiteRegistration r = {pooling::Init, pooling::Free, in Register_L2_POOL_REF() 486 pooling::GenericPrepare<pooling::kL2>, in Register_L2_POOL_REF() 487 pooling::L2Eval<pooling::kReference>}; in Register_L2_POOL_REF() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/api_def/base_api/ |
H A D | api_def_FractionalAvgPool.pbtxt | 12 output tensor after fractional avg pooling. 18 row pooling sequence, needed to calculate gradient. 24 column pooling sequence, needed to calculate gradient. 32 pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements 33 must be 1.0 because we don't allow pooling on batch and channels 34 dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions 41 When set to True, generates the pooling sequence in a 50 When set to True, it means when pooling, the values at the boundary 51 of adjacent pooling cells are used by both cells. For example: 57 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. [all …]
|
H A D | api_def_FractionalMaxPool.pbtxt | 12 output tensor after fractional max pooling. 18 row pooling sequence, needed to calculate gradient. 24 column pooling sequence, needed to calculate gradient. 32 pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements 33 must be 1.0 because we don't allow pooling on batch and channels 34 dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions 41 When set to True, generates the pooling sequence in a 50 When set to True, it means when pooling, the values at the boundary 51 of adjacent pooling cells are used by both cells. For example: 57 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. [all …]
|
H A D | api_def_FractionalAvgPoolGrad.pbtxt | 20 row pooling sequence, form pooling region with 27 column pooling sequence, form pooling region with 40 When set to True, it means when pooling, the values at the boundary 41 of adjacent pooling cells are used by both cells. For example: 47 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. 48 The result would be [41/3, 26/3] for fractional avg pooling. 55 out_backprop to those indices that form the same pooling cell. Therefore, we
|
H A D | api_def_FractionalMaxPoolGrad.pbtxt | 26 row pooling sequence, form pooling region with 33 column pooling sequence, form pooling region with 46 When set to True, it means when pooling, the values at the boundary 47 of adjacent pooling cells are used by both cells. For example: 53 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. 54 The result would be [20, 16] for fractional max pooling.
|
/aosp_15_r20/external/tensorflow/tensorflow/python/layers/ |
H A D | pooling.py | 18 from tensorflow.python.keras.legacy_tf_layers import pooling 21 AveragePooling1D = pooling.AveragePooling1D 22 average_pooling1d = pooling.average_pooling1d 23 MaxPooling1D = pooling.MaxPooling1D 24 max_pooling1d = pooling.max_pooling1d 25 AveragePooling2D = pooling.AveragePooling2D 26 average_pooling2d = pooling.average_pooling2d 27 MaxPooling2D = pooling.MaxPooling2D 28 max_pooling2d = pooling.max_pooling2d 29 AveragePooling3D = pooling.AveragePooling3D [all …]
|
H A D | layers.py | 57 from tensorflow.python.layers.pooling import AveragePooling1D 58 from tensorflow.python.layers.pooling import MaxPooling1D 59 from tensorflow.python.layers.pooling import AveragePooling2D 60 from tensorflow.python.layers.pooling import MaxPooling2D 61 from tensorflow.python.layers.pooling import AveragePooling3D 62 from tensorflow.python.layers.pooling import MaxPooling3D 64 from tensorflow.python.layers.pooling import average_pooling1d 65 from tensorflow.python.layers.pooling import max_pooling1d 66 from tensorflow.python.layers.pooling import average_pooling2d 67 from tensorflow.python.layers.pooling import max_pooling2d [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/keras/layers/ |
H A D | __init__.py | 108 from tensorflow.python.keras.layers.pooling import MaxPooling1D 109 from tensorflow.python.keras.layers.pooling import MaxPooling2D 110 from tensorflow.python.keras.layers.pooling import MaxPooling3D 111 from tensorflow.python.keras.layers.pooling import AveragePooling1D 112 from tensorflow.python.keras.layers.pooling import AveragePooling2D 113 from tensorflow.python.keras.layers.pooling import AveragePooling3D 114 from tensorflow.python.keras.layers.pooling import GlobalAveragePooling1D 115 from tensorflow.python.keras.layers.pooling import GlobalAveragePooling2D 116 from tensorflow.python.keras.layers.pooling import GlobalAveragePooling3D 117 from tensorflow.python.keras.layers.pooling import GlobalMaxPooling1D [all …]
|
/aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/internal/ |
H A D | CpuPool2dAssemblyWrapperKernel.cpp | 191 … arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooli… in create_arm_pooling() 193 arm_conv::pooling::PoolingWindow window{}; in create_arm_pooling() 197 arm_conv::pooling::PoolingStride stride{}; in create_arm_pooling() 200 …const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_i… in create_arm_pooling() 214 …arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_… in create_arm_pooling() 217 auto pooling_kernel_asm = arm_conv::pooling::pooling<Typesrc, Typedst>(args); in create_arm_pooling() 230 … arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooli… in create_arm_pooling_requant() 232 arm_conv::pooling::PoolingWindow window{}; in create_arm_pooling_requant() 236 arm_conv::pooling::PoolingStride stride{}; in create_arm_pooling_requant() 239 …const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_i… in create_arm_pooling_requant() [all …]
|
/aosp_15_r20/external/ComputeLibrary/src/ |
H A D | BUILD.bazel | 205 …"core/NEON/kernels/arm_conv/pooling/kernels/sme_fp16_nhwc_avg_3x3_s1_output2x2_depthfirst/generic.… 206 "core/NEON/kernels/arm_conv/pooling/kernels/sme_fp16_nhwc_avg_generic_depthfirst/generic.cpp", 207 …"core/NEON/kernels/arm_conv/pooling/kernels/sme_fp16_nhwc_max_2x2_s1_output2x2_depthfirst/generic.… 208 "core/NEON/kernels/arm_conv/pooling/kernels/sme_fp16_nhwc_max_generic_depthfirst/generic.cpp", 209 …"core/NEON/kernels/arm_conv/pooling/kernels/sme_fp32_nhwc_avg_3x3_s1_output2x2_depthfirst/generic.… 210 "core/NEON/kernels/arm_conv/pooling/kernels/sme_fp32_nhwc_avg_generic_depthfirst/generic.cpp", 211 …"core/NEON/kernels/arm_conv/pooling/kernels/sme_fp32_nhwc_max_2x2_s1_output2x2_depthfirst/generic.… 212 "core/NEON/kernels/arm_conv/pooling/kernels/sme_fp32_nhwc_max_generic_depthfirst/generic.cpp", 213 "core/NEON/kernels/arm_conv/pooling/kernels/sme_s8_nhwc_avg_generic_depthfirst/generic.cpp", 214 …"core/NEON/kernels/arm_conv/pooling/kernels/sme_s8_nhwc_max_2x2_s1_output2x2_depthfirst/generic.cp… [all …]
|
H A D | CMakeLists.txt | 184 …core/NEON/kernels/arm_conv/pooling/kernels/sme_fp16_nhwc_avg_3x3_s1_output2x2_depthfirst/generic.c… 185 core/NEON/kernels/arm_conv/pooling/kernels/sme_fp16_nhwc_avg_generic_depthfirst/generic.cpp 186 …core/NEON/kernels/arm_conv/pooling/kernels/sme_fp16_nhwc_max_2x2_s1_output2x2_depthfirst/generic.c… 187 core/NEON/kernels/arm_conv/pooling/kernels/sme_fp16_nhwc_max_generic_depthfirst/generic.cpp 188 …core/NEON/kernels/arm_conv/pooling/kernels/sme_fp32_nhwc_avg_3x3_s1_output2x2_depthfirst/generic.c… 189 core/NEON/kernels/arm_conv/pooling/kernels/sme_fp32_nhwc_avg_generic_depthfirst/generic.cpp 190 …core/NEON/kernels/arm_conv/pooling/kernels/sme_fp32_nhwc_max_2x2_s1_output2x2_depthfirst/generic.c… 191 core/NEON/kernels/arm_conv/pooling/kernels/sme_fp32_nhwc_max_generic_depthfirst/generic.cpp 192 core/NEON/kernels/arm_conv/pooling/kernels/sme_s8_nhwc_avg_generic_depthfirst/generic.cpp 193 core/NEON/kernels/arm_conv/pooling/kernels/sme_s8_nhwc_max_2x2_s1_output2x2_depthfirst/generic.cpp [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/ |
H A D | CMakeLists.txt | 154 src/average-pooling.c 163 src/global-average-pooling.c 167 src/max-pooling.c 566 add_executable(max-pooling-test test/max-pooling.cc) 567 set_target_properties(max-pooling-test PROPERTIES 571 target_include_directories(max-pooling-test PRIVATE src test) 572 target_link_libraries(max-pooling-test PRIVATE pytorch_qnnpack cpuinfo gtest gtest_main) 573 add_test(max-pooling-test max-pooling-test) 575 add_executable(average-pooling-test test/average-pooling.cc) 576 set_target_properties(average-pooling-test PROPERTIES [all …]
|
H A D | buckbuild.bzl | 256 "src/average-pooling.c", 270 "src/global-average-pooling.c", 276 "src/max-pooling.c", 571 "test/average-pooling.cc", 578 "test/global-average-pooling.cc", 582 "test/max-pooling.cc", 603 "average-pooling-operator-tester.h": "test/average-pooling-operator-tester.h", 616 … "global-average-pooling-operator-tester.h": "test/global-average-pooling-operator-tester.h", 622 "max-pooling-operator-tester.h": "test/max-pooling-operator-tester.h",
|
/aosp_15_r20/external/ComputeLibrary/ |
H A D | Android.bp | 219 … "src/core/NEON/kernels/arm_conv/pooling/kernels/cpp_nhwc_1x1_stride_any_depthfirst/generic.cpp", 220 "src/core/NEON/kernels/arm_conv/pooling/pooling_fp16.cpp", 221 "src/core/NEON/kernels/arm_conv/pooling/pooling_fp32.cpp", 222 "src/core/NEON/kernels/arm_conv/pooling/pooling_s8.cpp", 223 "src/core/NEON/kernels/arm_conv/pooling/pooling_s8q.cpp", 224 "src/core/NEON/kernels/arm_conv/pooling/pooling_u8.cpp", 225 "src/core/NEON/kernels/arm_conv/pooling/pooling_u8q.cpp", 1037 …"src/core/NEON/kernels/arm_conv/pooling/kernels/a64_fp16_nhwc_avg_3x3_s1_output2x2_depthfirst/gene… 1038 … "src/core/NEON/kernels/arm_conv/pooling/kernels/a64_fp16_nhwc_avg_generic_depthfirst/generic.cpp", 1039 …"src/core/NEON/kernels/arm_conv/pooling/kernels/a64_fp16_nhwc_max_2x2_s1_output2x2_depthfirst/gene… [all …]
|
/aosp_15_r20/external/armnn/src/backends/backendsCommon/test/ |
H A D | EndToEndTestImpl.hpp | 202 IConnectableLayer* pooling = net->AddActivationLayer(descriptor); in ImportNonAlignedInputPointerTest() local 206 input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); in ImportNonAlignedInputPointerTest() 207 pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); in ImportNonAlignedInputPointerTest() 210 pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32)); in ImportNonAlignedInputPointerTest() 270 IConnectableLayer* pooling = net->AddActivationLayer(descriptor); in ExportNonAlignedOutputPointerTest() local 274 input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); in ExportNonAlignedOutputPointerTest() 275 pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); in ExportNonAlignedOutputPointerTest() 278 pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 4 }, DataType::Float32)); in ExportNonAlignedOutputPointerTest() 345 IConnectableLayer* pooling = net->AddActivationLayer(descriptor); in ImportAlignedPointerTest() local 349 input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); in ImportAlignedPointerTest() [all …]
|
/aosp_15_r20/external/armnn/src/armnn/test/ |
H A D | EndToEndTest.cpp | 33 IConnectableLayer* pooling = net->AddNormalizationLayer(descriptor); variable 37 input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); 38 pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); 41 pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
H A D | pooling_ops.cc | 206 auto pooling = xla::MaxPool( in Compile() local 213 StatusOr<xla::Shape> result_shape = ctx->builder()->GetShape(pooling); in Compile() 227 pooling = in Compile() 228 xla::Transpose(xla::Reshape(pooling, new_dims), {0, 1, 3, 4, 2}); in Compile() 231 ctx->SetOutput(0, pooling); in Compile() 288 auto pooling = in Compile() local 292 ctx->SetOutput(0, ConvertElementType(pooling, ctx->input_xla_type(0))); in Compile() 390 auto pooling = in Compile() local 393 auto status_or_shape = pooling.builder()->GetShape(pooling); in Compile()
|
/aosp_15_r20/packages/modules/NeuralNetworks/common/types/operations/src/ |
D | Pooling.cpp | 25 namespace pooling { namespace 94 return pooling::validate(OperationType::AVERAGE_POOL_2D, context); in __anon99b48d8d0102() 97 return pooling::validate(OperationType::L2_POOL_2D, context); in __anon99b48d8d0202() 100 return pooling::validate(OperationType::MAX_POOL_2D, context); in __anon99b48d8d0302()
|
/aosp_15_r20/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | Pooling.cpp | 42 namespace pooling { namespace 382 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(AVERAGE_POOL_2D, pooling::prepare, 383 pooling::executeAveragePool, .allowZeroSizedInput = true); 384 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(L2_POOL_2D, pooling::prepare, pooling::executeL2Pool, 386 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(MAX_POOL_2D, pooling::prepare, pooling::executeMaxPool,
|
/aosp_15_r20/external/armnn/src/backends/neon/test/ |
H A D | NeonFallbackTests.cpp | 187 IConnectableLayer* pooling = net->AddPooling2dLayer(desc, "pooling"); variable 192 add->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); 193 pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); 201 pooling->GetOutputSlot(0).SetTensorInfo(poolingInfo); 467 IConnectableLayer* pooling = net->AddPooling2dLayer(desc, "pooling"); variable 471 input0->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); 473 pooling->GetOutputSlot(0).Connect(add->GetInputSlot(0)); 481 pooling->GetOutputSlot(0).SetTensorInfo(poolingInfo); 1018 IConnectableLayer* pooling = net->AddPooling2dLayer(desc, "pooling"); variable 1025 sub->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); [all …]
|
/aosp_15_r20/external/armnn/src/backends/cl/test/ |
H A D | ClFallbackTests.cpp | 306 IConnectableLayer* pooling = net->AddPooling2dLayer(desc, "pooling"); variable 313 sub->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); 314 pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); 325 pooling->GetOutputSlot(0).SetTensorInfo(poolingInfo); 465 IConnectableLayer* pooling = net->AddPooling2dLayer(desc, "pooling"); variable 472 sub->GetOutputSlot(0).Connect(pooling->GetInputSlot(0)); 473 pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0)); 484 pooling->GetOutputSlot(0).SetTensorInfo(poolingInfo);
|
/aosp_15_r20/external/tensorflow/tensorflow/python/eager/benchmarks/resnet50/ |
H A D | resnet50.py | 201 pooling=None, argument 214 self.pooling = pooling 282 if pooling == 'avg': 287 elif pooling == 'max':
|
/aosp_15_r20/external/tensorflow/tensorflow/security/advisory/ |
H A D | tfsa-2021-074.md | 1 ## TFSA-2021-074: Division by zero in optimized pooling implementations in TFLite 7 Optimized pooling implementations in TFLite fail to check that the stride 9 …w/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90).
|
/aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/nchw/ |
H A D | pooling_layer.cl | 68 /** Performs a pooling function of pool size equal to N (NCHW) 72 * @note In case of average pooling the following information must be passed at compile time: 73 * -DPOOL_AVG must be provided otherwise max pooling will be performed. 76 * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension 77 …* @note The initial value for the pooling operation must be passed at compile time using -DINITIAL… 178 // Divide by pool region in case of average pooling 204 // Take square root of the result in L2 pooling 214 /** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
|
/aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/nhwc/ |
H A D | pooling_layer.cl | 46 /** Performs pooling layer of size equal to MxN. This OpenCL kernel can perform the following pooli… 61 …* @note The initial value for the pooling operation must be passed at compile time using -DINITIAL… 124 // Global pooling path 159 // Take square root of the result in L2 pooling 176 /** Performs pooling layer of size equal to 2. This OpenCL kernel can perform the following pooling… 191 …* @note The initial value for the pooling operation must be passed at compile time using -DINITIAL… 320 // Take square root of the result in L2 pooling
|