/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cpu/ |
H A D | qembeddingbag_unpack.cpp | 23 auto packed_weight = packed_w; in unpack() local 27 const auto input_rows = packed_weight.size(0); in unpack() 28 const auto input_columns = packed_weight.size(1); in unpack() 40 const auto* input = packed_weight.const_data_ptr<uint8_t>(); in unpack() 106 Tensor& qembeddingbag_byte_unpack_out(Tensor& output, const Tensor& packed_weight) { in qembeddingbag_byte_unpack_out() argument 121 const auto packed_weight_sizes = packed_weight.sizes(); in qembeddingbag_byte_unpack_out() 128 const auto* input_data = packed_weight.const_data_ptr<uint8_t>(); in qembeddingbag_byte_unpack_out() 161 Tensor qembeddingbag_byte_unpack(const Tensor& packed_weight) { in qembeddingbag_byte_unpack() argument 164 packed_weight.options().dtype(kFloat), in qembeddingbag_byte_unpack() 165 packed_weight.suggest_memory_format()); in qembeddingbag_byte_unpack() [all …]
|
H A D | qlinear.cpp | 986 auto packed_weight = at::native::itensor_from_mkldnn(onednn_weight); in linear_int8_with_onednn_weight() local 987 int64_t K = input.size(dim - 1), M = input.numel() / K, N = packed_weight.get_dim(1); in linear_int8_with_onednn_weight() 1025 auto weights_desc = packed_weight.get_desc(); in linear_int8_with_onednn_weight() 1066 auto expected_weight = packed_weight.reorder_if_differ_in(primitive_desc.weights_desc()); in linear_int8_with_onednn_weight() 1113 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight, in run() argument 1117 return packed_weight->apply_relu( in run() 1120 return packed_weight->apply( in run() 1130 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight, in run() argument 1139 return dynamic_cast<PackedLinearWeightsOnednn*>(packed_weight.get())->apply_leaky_relu( in run() 1155 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight, in run() argument [all …]
|
H A D | qconv_dynamic.cpp | 194 packed_weight, in run() 196 return packed_weight->apply_dynamic(input, reduce_range); in run() 205 const c10::intrusive_ptr<ConvPackedParamsBase<2>>& packed_weight, in run() argument 210 output = packed_weight->apply_dynamic(input, reduce_range); in run()
|
H A D | qconv.cpp | 1551 auto packed_weight = at::native::itensor_from_mkldnn(weight); in _quantized_convolution_onednn() local 1587 const auto& kernel_size = packed_weight.get_dims(); in _quantized_convolution_onednn() 1623 auto weight_grouped = packed_weight.make_grouped_weights(groups, /* is_deconv */false); in _quantized_convolution_onednn() 1712 params, src, packed_weight, expected_bias, dst_dims, dst, in _quantized_convolution_onednn() 1720 ideep::tensor expected_weight = packed_weight.reorder_if_differ_in(expected_weight_desc); in _quantized_convolution_onednn() 1776 const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight, in run() argument 1780 return packed_weight->apply_relu(act, output_scale, output_zero_point); in run() 1782 return packed_weight->apply(act, output_scale, output_zero_point); in run() 1793 const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight, in run() argument 1802 … return dynamic_cast<PackedConvWeightsOnednn<kSpatialDim>*>(packed_weight.get())->apply_add_relu( in run() [all …]
|
H A D | qlinear_dynamic.cpp | 630 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight, in run() argument 633 return packed_weight->apply_dynamic_relu(std::move(input), reduce_range); in run() 635 return packed_weight->apply_dynamic(std::move(input), reduce_range); in run() 646 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight) { in run() argument 653 auto output = packed_weight->apply_dynamic(std::move(input)); in run() 692 auto packed_weight = PackedLinearWeightFp16::prepack(weight, bias); in run() local 693 auto output = packed_weight->apply_dynamic(std::move(input)); in run()
|
H A D | qlinear_prepack.cpp | 305 auto packed_weight = at::native::new_with_itensor_mkldnn( in pack_weight_to_onednn_tensor() local 309 return packed_weight; in pack_weight_to_onednn_tensor() 479 const at::Tensor& packed_weight, 486 const at::Tensor& packed_weight, in _wrapped_quantized_linear_prepacked() argument 499 packed_weight); in _wrapped_quantized_linear_prepacked() 536 [[maybe_unused]] const at::Tensor& packed_weight, 544 [[maybe_unused]] const at::Tensor& packed_weight, in _wrapped_quantized_linear_prepacked_meta() argument
|
H A D | qembeddingbag.cpp | 1039 const c10::intrusive_ptr<EmbeddingPackedParamsBase>& packed_weight, in run() argument 1049 return packed_weight->embeddingbag_byte( in run() 1058 return packed_weight->embeddingbag_4bit( in run() 1078 const c10::intrusive_ptr<EmbeddingPackedParamsBase>& packed_weight, in run() argument 1086 return packed_weight->embeddingbag_byte( in run() 1095 return packed_weight->embeddingbag_4bit( in run()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/ |
H A D | qconv_unpack.cpp | 53 const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) { in run() argument 59 return packed_weight->unpack(); in run() 69 return packed_weight->unpack(); in run() 75 return packed_weight->unpack(); in run() 89 const c10::intrusive_ptr<ConvPackedParamsBase<2>>& packed_weight) { in run() argument 96 std::tie(weight, bias) = packed_weight->unpack(); in run() 104 std::tie(weight, bias) = packed_weight->unpack(); in run() 113 std::tie(weight, bias) = packed_weight->unpack(); in run() 131 const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) { in run() argument 132 return packed_weight->stride(); in run() [all …]
|
H A D | qlinear_unpack.cpp | 25 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight) { in run() argument 26 return packed_weight->unpack(); in run() 33 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight) { in run() argument 41 return packed_weight->unpack(); in run() 48 const at::Tensor& packed_weight) { in run() argument 59 const at::Tensor& packed_weight) { in run() argument
|
/aosp_15_r20/external/pytorch/torch/_inductor/ |
H A D | mkldnn_lowerings.py | 369 packed_weight: TensorBox, 389 packed_weight, 416 packed_weight: TensorBox, 452 packed_weight, 476 packed_weight: TensorBox, 526 *_, layout, x, packed_weight = mm_args( 527 x, packed_weight, layout=layout, out_dtype=output_dtype 543 and use_cpp_packed_gemm_template(layout, x, packed_weight) 545 W_tensor = V.graph.constants[packed_weight.get_name()].to_dense() 549 name=packed_weight.get_name() + "_BMatrixCompens", [all …]
|
H A D | mkldnn_ir.py | 639 packed_weight = args[1] 681 packed_weight, 882 packed_weight = args[1] 939 packed_weight, 1339 packed_weight = args[1] 1392 packed_weight, 1557 packed_weight = args[1] 1630 packed_weight,
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | QuantizedLinear.cpp | 406 c10::intrusive_ptr<LinearPackedParamsBase> packed_weight = in fbgemm_pack_gemm_matrix_fp16() local 409 std::make_unique<decltype(packed_weight)>(std::move(packed_weight)); in fbgemm_pack_gemm_matrix_fp16() 416 const Tensor& packed_weight, in fbgemm_linear_fp16_weight_fp32_activation() argument 433 c10::intrusive_ptr<LinearPackedParamsBase>>(packed_weight)) in fbgemm_linear_fp16_weight_fp32_activation() 464 const Tensor& packed_weight, in fbgemm_linear_fp16_weight() argument 467 input, packed_weight, bias); in fbgemm_linear_fp16_weight() 558 const Tensor& packed_weight, 572 const Tensor& packed_weight,
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cuda/ |
H A D | EmbeddingBag.cu | 172 Tensor qembeddingbag_byte_unpack(const Tensor& packed_weight) { in qembeddingbag_byte_unpack() argument 173 const auto packed_weight_sizes = packed_weight.sizes(); in qembeddingbag_byte_unpack() 184 packed_weight.options().dtype(kFloat), in qembeddingbag_byte_unpack() 185 packed_weight.suggest_memory_format()); in qembeddingbag_byte_unpack() 544 Tensor qembeddingbag_4bit_unpack(const Tensor& packed_weight) { in qembeddingbag_4bit_unpack() argument 546 const auto input_rows = packed_weight.size(0); in qembeddingbag_4bit_unpack() 547 const auto input_columns = packed_weight.size(1); in qembeddingbag_4bit_unpack() 548 const auto* input_data = packed_weight.const_data_ptr<uint8_t>(); in qembeddingbag_4bit_unpack() 560 packed_weight.options().dtype(kFloat), in qembeddingbag_4bit_unpack() 561 packed_weight.suggest_memory_format()); in qembeddingbag_4bit_unpack()
|
/aosp_15_r20/external/pytorch/benchmarks/operator_benchmark/pt/ |
H A D | qembedding_pack_test.py | 73 def forward(self, packed_weight): argument 74 return self.op_func(packed_weight) 85 def forward(self, packed_weight): argument 86 return self.op_func(packed_weight)
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/quantized/cudnn/ |
H A D | Conv.cpp | 354 const c10::intrusive_ptr<ConvPackedParamsBase<2>>& packed_weight, in run() argument 363 output = packed_weight->apply_relu(act, output_scale, output_zero_point); in run() 365 output = packed_weight->apply(act, output_scale, output_zero_point); in run() 377 const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight, in run() argument 384 return packed_weight->apply_relu(act, output_scale, output_zero_point); in run() 386 return packed_weight->apply(act, output_scale, output_zero_point); in run()
|
H A D | Linear.cpp | 347 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight, in run() argument 352 return packed_weight->apply_relu(std::move(act), output_scale, output_zero_point); in run() 354 return packed_weight->apply(std::move(act), output_scale, output_zero_point); in run()
|
/aosp_15_r20/external/pytorch/torch/ao/quantization/fx/ |
H A D | _lower_to_native_backend.py | 420 packed_weight = getattr(self, attr_name) 421 destination[prefix + attr_name] = packed_weight 467 packed_weight = prepacking_module() 468 packed_weights[node.name] = packed_weight 480 packed_weight = packed_weights[node.name] 488 setattr(quantized_model, packed_weight_name, packed_weight) 916 packed_weight = model.graph.create_node( 929 packed_weight, 1058 packed_weight = model.graph.create_node( 1065 func_node.args = (pattern_input, packed_weight, reduce_range_node) [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ao_sparse/quantized/cpu/ |
H A D | qlinear_dynamic.cpp | 170 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight) { in run() argument 175 return packed_weight->apply_dynamic_relu(input); in run() 177 return packed_weight->apply_dynamic(input); in run()
|
H A D | qlinear.cpp | 238 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight, in run() argument 242 return packed_weight->apply_relu(input, output_scale, output_zero_point); in run() 244 return packed_weight->apply(input, output_scale, output_zero_point); in run()
|
H A D | qlinear_unpack.cpp | 130 const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight) { in run() argument 131 return packed_weight->unpack(); in run()
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/runtime/static/ |
H A D | ops.cpp | 2221 c10::intrusive_ptr<LinearPackedParamsBase> packed_weight; in __anon11f46a8b6e02() local 2223 packed_weight = w->toCustomClass<LinearPackedParamsBase>(); in __anon11f46a8b6e02() 2225 return [packed_weight](ProcessedNode* p_node) { in __anon11f46a8b6e02() 2244 if (packed_weight) { in __anon11f46a8b6e02() 2245 packed_weight->apply_out(input, output_scale, output_zero_point, out_t); in __anon11f46a8b6e02() 2266 c10::intrusive_ptr<LinearPackedParamsBase> packed_weight; in __anon11f46a8b7002() local 2268 packed_weight = w->toCustomClass<LinearPackedParamsBase>(); in __anon11f46a8b7002() 2270 return [packed_weight](ProcessedNode* p_node) { in __anon11f46a8b7002() 2290 if (packed_weight) { in __anon11f46a8b7002() 2291 packed_weight->apply_out( in __anon11f46a8b7002() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/ |
H A D | ConvPrepack.cpp | 83 ideep::tensor packed_weight; in create() local 84 packed_weight.init(expected_weight_desc); in create() 85 packed_weight.feed_from(w); in create() 88 std::move(packed_weight), in create()
|
/aosp_15_r20/external/pytorch/torch/ao/nn/quantized/dynamic/modules/ |
H A D | rnn.py | 47 packed_weight = torch.ops.quantized.linear_prepack(qweight, bias) 49 return packed_weight 55 packed_weight = torch.ops.quantized.linear_prepack_fp16(qweight, bias) 57 return packed_weight 431 packed_weight = torch.ops.quantized.linear_prepack(qweight, b) 432 return packed_weight
|
/aosp_15_r20/external/pytorch/torch/_inductor/fx_passes/ |
H A D | quantization.py | 324 packed_weight, w_scale, w_zp = ( 354 packed_weight, 412 packed_weight, w_scale, w_zp = ( 432 packed_weight, 478 packed_weight, w_scale, w_zp = ( 508 packed_weight, 644 packed_weight, w_scale, w_zp = ( 674 packed_weight,
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/ |
H A D | mkldnn_rewrite.cpp | 178 Value* packed_weight = graph->insertConstant(weak_class_obj) in PrePackingOpsFolder() local 180 prepack_op_value->replaceAllUsesWith(packed_weight); in PrePackingOpsFolder()
|