xref: /aosp_15_r20/system/core/debuggerd/libdebuggerd/utility.cpp (revision 00c7fec1bb09f3284aad6a6f96d2f63dfc3650ad)
1  /*
2   * Copyright 2008, The Android Open Source Project
3   *
4   * Licensed under the Apache License, Version 2.0 (the "License");
5   * you may not use this file except in compliance with the License.
6   * You may obtain a copy of the License at
7   *
8   *     http://www.apache.org/licenses/LICENSE-2.0
9   *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  
17  #define LOG_TAG "DEBUG"
18  
19  #include "libdebuggerd/utility.h"
20  #include "libdebuggerd/utility_host.h"
21  
22  #include <errno.h>
23  #include <signal.h>
24  #include <string.h>
25  #include <sys/capability.h>
26  #include <sys/prctl.h>
27  #include <sys/ptrace.h>
28  #include <sys/uio.h>
29  #include <sys/wait.h>
30  #include <unistd.h>
31  
32  #include <set>
33  #include <string>
34  
35  #include <android-base/properties.h>
36  #include <android-base/stringprintf.h>
37  #include <android-base/strings.h>
38  #include <android-base/unique_fd.h>
39  #include <async_safe/log.h>
40  #include <bionic/reserved_signals.h>
41  #include <debuggerd/handler.h>
42  #include <log/log.h>
43  #include <unwindstack/AndroidUnwinder.h>
44  #include <unwindstack/Memory.h>
45  #include <unwindstack/Unwinder.h>
46  
47  using android::base::StringPrintf;
48  using android::base::unique_fd;
49  
is_allowed_in_logcat(enum logtype ltype)50  bool is_allowed_in_logcat(enum logtype ltype) {
51    return (ltype == HEADER) || (ltype == REGISTERS) || (ltype == BACKTRACE);
52  }
53  
should_write_to_kmsg()54  static bool should_write_to_kmsg() {
55    // Write to kmsg if tombstoned isn't up, and we're able to do so.
56    if (!android::base::GetBoolProperty("ro.debuggable", false)) {
57      return false;
58    }
59  
60    if (android::base::GetProperty("init.svc.tombstoned", "") == "running") {
61      return false;
62    }
63  
64    return true;
65  }
66  
67  __attribute__((__weak__, visibility("default")))
_LOG(log_t * log,enum logtype ltype,const char * fmt,...)68  void _LOG(log_t* log, enum logtype ltype, const char* fmt, ...) {
69    va_list ap;
70    va_start(ap, fmt);
71    _VLOG(log, ltype, fmt, ap);
72    va_end(ap);
73  }
74  
75  __attribute__((__weak__, visibility("default")))
_VLOG(log_t * log,enum logtype ltype,const char * fmt,va_list ap)76  void _VLOG(log_t* log, enum logtype ltype, const char* fmt, va_list ap) {
77    bool write_to_tombstone = (log->tfd != -1);
78    bool write_to_logcat = is_allowed_in_logcat(ltype)
79                        && log->crashed_tid != -1
80                        && log->current_tid != -1
81                        && (log->crashed_tid == log->current_tid);
82    static bool write_to_kmsg = should_write_to_kmsg();
83  
84    std::string msg;
85    android::base::StringAppendV(&msg, fmt, ap);
86  
87    if (msg.empty()) return;
88  
89    if (write_to_tombstone) {
90      TEMP_FAILURE_RETRY(write(log->tfd, msg.c_str(), msg.size()));
91    }
92  
93    if (write_to_logcat) {
94      __android_log_buf_write(LOG_ID_CRASH, ANDROID_LOG_FATAL, LOG_TAG, msg.c_str());
95      if (log->amfd_data != nullptr) {
96        *log->amfd_data += msg;
97      }
98  
99      if (write_to_kmsg) {
100        unique_fd kmsg_fd(open("/dev/kmsg_debug", O_WRONLY | O_APPEND | O_CLOEXEC));
101        if (kmsg_fd.get() >= 0) {
102          // Our output might contain newlines which would otherwise be handled by the android logger.
103          // Split the lines up ourselves before sending to the kernel logger.
104          if (msg.back() == '\n') {
105            msg.back() = '\0';
106          }
107  
108          std::vector<std::string> fragments = android::base::Split(msg, "\n");
109          for (const std::string& fragment : fragments) {
110            static constexpr char prefix[] = "<3>DEBUG: ";
111            struct iovec iov[3];
112            iov[0].iov_base = const_cast<char*>(prefix);
113            iov[0].iov_len = strlen(prefix);
114            iov[1].iov_base = const_cast<char*>(fragment.c_str());
115            iov[1].iov_len = fragment.length();
116            iov[2].iov_base = const_cast<char*>("\n");
117            iov[2].iov_len = 1;
118            TEMP_FAILURE_RETRY(writev(kmsg_fd.get(), iov, 3));
119          }
120        }
121      }
122    }
123  }
124  
125  #define MEMORY_BYTES_TO_DUMP 256
126  #define MEMORY_BYTES_PER_LINE 16
127  static_assert(MEMORY_BYTES_PER_LINE == kTagGranuleSize);
128  
dump_memory(void * out,size_t len,uint8_t * tags,size_t tags_len,uint64_t * addr,unwindstack::Memory * memory)129  ssize_t dump_memory(void* out, size_t len, uint8_t* tags, size_t tags_len, uint64_t* addr,
130                      unwindstack::Memory* memory) {
131    // Align the address to the number of bytes per line to avoid confusing memory tag output if
132    // memory is tagged and we start from a misaligned address. Start 32 bytes before the address.
133    *addr &= ~(MEMORY_BYTES_PER_LINE - 1);
134    if (*addr >= 4128) {
135      *addr -= 32;
136    }
137  
138    // We don't want the address tag to appear in the addresses in the memory dump.
139    *addr = untag_address(*addr);
140  
141    // Don't bother if the address would overflow, taking tag bits into account. Note that
142    // untag_address truncates to 32 bits on 32-bit platforms as a side effect of returning a
143    // uintptr_t, so this also checks for 32-bit overflow.
144    if (untag_address(*addr + MEMORY_BYTES_TO_DUMP - 1) < *addr) {
145      return -1;
146    }
147  
148    memset(out, 0, len);
149  
150    size_t bytes = memory->Read(*addr, reinterpret_cast<uint8_t*>(out), len);
151    if (bytes % sizeof(uintptr_t) != 0) {
152      // This should never happen, but just in case.
153      ALOGE("Bytes read %zu, is not a multiple of %zu", bytes, sizeof(uintptr_t));
154      bytes &= ~(sizeof(uintptr_t) - 1);
155    }
156  
157    bool skip_2nd_read = false;
158    if (bytes == 0) {
159      // In this case, we might want to try another read at the beginning of
160      // the next page only if it's within the amount of memory we would have
161      // read.
162      size_t page_size = sysconf(_SC_PAGE_SIZE);
163      uint64_t next_page = (*addr + (page_size - 1)) & ~(page_size - 1);
164      if (next_page == *addr || next_page >= *addr + len) {
165        skip_2nd_read = true;
166      }
167      *addr = next_page;
168    }
169  
170    if (bytes < len && !skip_2nd_read) {
171      // Try to do one more read. This could happen if a read crosses a map,
172      // but the maps do not have any break between them. Or it could happen
173      // if reading from an unreadable map, but the read would cross back
174      // into a readable map. Only requires one extra read because a map has
175      // to contain at least one page, and the total number of bytes to dump
176      // is smaller than a page.
177      size_t bytes2 = memory->Read(*addr + bytes, static_cast<uint8_t*>(out) + bytes, len - bytes);
178      bytes += bytes2;
179      if (bytes2 > 0 && bytes % sizeof(uintptr_t) != 0) {
180        // This should never happen, but we'll try and continue any way.
181        ALOGE("Bytes after second read %zu, is not a multiple of %zu", bytes, sizeof(uintptr_t));
182        bytes &= ~(sizeof(uintptr_t) - 1);
183      }
184    }
185  
186    // If we were unable to read anything, it probably means that the register doesn't contain a
187    // valid pointer.
188    if (bytes == 0) {
189      return -1;
190    }
191  
192    for (uint64_t tag_granule = 0; tag_granule < bytes / kTagGranuleSize; ++tag_granule) {
193      long tag = memory->ReadTag(*addr + kTagGranuleSize * tag_granule);
194      if (tag_granule < tags_len) {
195        tags[tag_granule] = tag >= 0 ? tag : 0;
196      } else {
197        ALOGE("Insufficient space for tags");
198      }
199    }
200  
201    return bytes;
202  }
203  
dump_memory(log_t * log,unwindstack::Memory * memory,uint64_t addr,const std::string & label)204  void dump_memory(log_t* log, unwindstack::Memory* memory, uint64_t addr, const std::string& label) {
205    // Dump 256 bytes
206    uintptr_t data[MEMORY_BYTES_TO_DUMP / sizeof(uintptr_t)];
207    uint8_t tags[MEMORY_BYTES_TO_DUMP / kTagGranuleSize];
208  
209    ssize_t bytes = dump_memory(data, sizeof(data), tags, sizeof(tags), &addr, memory);
210    if (bytes == -1) {
211      return;
212    }
213  
214    _LOG(log, logtype::MEMORY, "\n%s:\n", label.c_str());
215  
216    // Dump the code around memory as:
217    //  addr             contents                           ascii
218    //  0000000000008d34 ef000000e8bd0090 e1b00000512fff1e  ............../Q
219    //  0000000000008d44 ea00b1f9e92d0090 e3a070fcef000000  ......-..p......
220    // On 32-bit machines, there are still 16 bytes per line but addresses and
221    // words are of course presented differently.
222    uintptr_t* data_ptr = data;
223    uint8_t* tags_ptr = tags;
224    for (size_t line = 0; line < static_cast<size_t>(bytes) / MEMORY_BYTES_PER_LINE; line++) {
225      uint64_t tagged_addr = addr | static_cast<uint64_t>(*tags_ptr++) << 56;
226      std::string logline;
227      android::base::StringAppendF(&logline, "    %" PRIPTR, tagged_addr);
228  
229      addr += MEMORY_BYTES_PER_LINE;
230      std::string ascii;
231      for (size_t i = 0; i < MEMORY_BYTES_PER_LINE / sizeof(uintptr_t); i++) {
232        android::base::StringAppendF(&logline, " %" PRIPTR, static_cast<uint64_t>(*data_ptr));
233  
234        // Fill out the ascii string from the data.
235        uint8_t* ptr = reinterpret_cast<uint8_t*>(data_ptr);
236        for (size_t val = 0; val < sizeof(uintptr_t); val++, ptr++) {
237          if (*ptr >= 0x20 && *ptr < 0x7f) {
238            ascii += *ptr;
239          } else {
240            ascii += '.';
241          }
242        }
243        data_ptr++;
244      }
245      _LOG(log, logtype::MEMORY, "%s  %s\n", logline.c_str(), ascii.c_str());
246    }
247  }
248  
drop_capabilities()249  void drop_capabilities() {
250    __user_cap_header_struct capheader;
251    memset(&capheader, 0, sizeof(capheader));
252    capheader.version = _LINUX_CAPABILITY_VERSION_3;
253    capheader.pid = 0;
254  
255    __user_cap_data_struct capdata[2];
256    memset(&capdata, 0, sizeof(capdata));
257  
258    if (capset(&capheader, &capdata[0]) == -1) {
259      async_safe_fatal("failed to drop capabilities: %s", strerror(errno));
260    }
261  
262    if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) != 0) {
263      async_safe_fatal("failed to set PR_SET_NO_NEW_PRIVS: %s", strerror(errno));
264    }
265  }
266  
signal_has_si_addr(const siginfo_t * si)267  bool signal_has_si_addr(const siginfo_t* si) {
268    // Manually sent signals won't have si_addr.
269    if (si->si_code == SI_USER || si->si_code == SI_QUEUE || si->si_code == SI_TKILL) {
270      return false;
271    }
272  
273    switch (si->si_signo) {
274      case SIGBUS:
275      case SIGFPE:
276      case SIGILL:
277      case SIGTRAP:
278        return true;
279      case SIGSEGV:
280        return si->si_code != SEGV_MTEAERR;
281      default:
282        return false;
283    }
284  }
285  
signal_has_sender(const siginfo_t * si,pid_t caller_pid)286  bool signal_has_sender(const siginfo_t* si, pid_t caller_pid) {
287    return SI_FROMUSER(si) && (si->si_pid != 0) && (si->si_pid != caller_pid);
288  }
289  
get_signal_sender(char * buf,size_t n,const siginfo_t * si)290  void get_signal_sender(char* buf, size_t n, const siginfo_t* si) {
291    snprintf(buf, n, " from pid %d, uid %d", si->si_pid, si->si_uid);
292  }
293  
get_signame(const siginfo_t * si)294  const char* get_signame(const siginfo_t* si) {
295    switch (si->si_signo) {
296      case SIGABRT: return "SIGABRT";
297      case SIGBUS: return "SIGBUS";
298      case SIGFPE: return "SIGFPE";
299      case SIGILL: return "SIGILL";
300      case SIGSEGV: return "SIGSEGV";
301      case SIGSTKFLT: return "SIGSTKFLT";
302      case SIGSTOP: return "SIGSTOP";
303      case SIGSYS: return "SIGSYS";
304      case SIGTRAP: return "SIGTRAP";
305      case BIONIC_SIGNAL_DEBUGGER:
306        return "<debuggerd signal>";
307      default: return "?";
308    }
309  }
310  
get_sigcode(const siginfo_t * si)311  const char* get_sigcode(const siginfo_t* si) {
312    // Try the signal-specific codes...
313    switch (si->si_signo) {
314      case SIGILL:
315        switch (si->si_code) {
316          case ILL_ILLOPC: return "ILL_ILLOPC";
317          case ILL_ILLOPN: return "ILL_ILLOPN";
318          case ILL_ILLADR: return "ILL_ILLADR";
319          case ILL_ILLTRP: return "ILL_ILLTRP";
320          case ILL_PRVOPC: return "ILL_PRVOPC";
321          case ILL_PRVREG: return "ILL_PRVREG";
322          case ILL_COPROC: return "ILL_COPROC";
323          case ILL_BADSTK: return "ILL_BADSTK";
324          case ILL_BADIADDR:
325            return "ILL_BADIADDR";
326          case __ILL_BREAK:
327            return "ILL_BREAK";
328          case __ILL_BNDMOD:
329            return "ILL_BNDMOD";
330        }
331        static_assert(NSIGILL == __ILL_BNDMOD, "missing ILL_* si_code");
332        break;
333      case SIGBUS:
334        switch (si->si_code) {
335          case BUS_ADRALN: return "BUS_ADRALN";
336          case BUS_ADRERR: return "BUS_ADRERR";
337          case BUS_OBJERR: return "BUS_OBJERR";
338          case BUS_MCEERR_AR: return "BUS_MCEERR_AR";
339          case BUS_MCEERR_AO: return "BUS_MCEERR_AO";
340        }
341        static_assert(NSIGBUS == BUS_MCEERR_AO, "missing BUS_* si_code");
342        break;
343      case SIGFPE:
344        switch (si->si_code) {
345          case FPE_INTDIV: return "FPE_INTDIV";
346          case FPE_INTOVF: return "FPE_INTOVF";
347          case FPE_FLTDIV: return "FPE_FLTDIV";
348          case FPE_FLTOVF: return "FPE_FLTOVF";
349          case FPE_FLTUND: return "FPE_FLTUND";
350          case FPE_FLTRES: return "FPE_FLTRES";
351          case FPE_FLTINV: return "FPE_FLTINV";
352          case FPE_FLTSUB: return "FPE_FLTSUB";
353          case __FPE_DECOVF:
354            return "FPE_DECOVF";
355          case __FPE_DECDIV:
356            return "FPE_DECDIV";
357          case __FPE_DECERR:
358            return "FPE_DECERR";
359          case __FPE_INVASC:
360            return "FPE_INVASC";
361          case __FPE_INVDEC:
362            return "FPE_INVDEC";
363          case FPE_FLTUNK:
364            return "FPE_FLTUNK";
365          case FPE_CONDTRAP:
366            return "FPE_CONDTRAP";
367        }
368        static_assert(NSIGFPE == FPE_CONDTRAP, "missing FPE_* si_code");
369        break;
370      case SIGSEGV:
371        switch (si->si_code) {
372          case SEGV_MAPERR: return "SEGV_MAPERR";
373          case SEGV_ACCERR: return "SEGV_ACCERR";
374          case SEGV_BNDERR: return "SEGV_BNDERR";
375          case SEGV_PKUERR: return "SEGV_PKUERR";
376          case SEGV_ACCADI:
377            return "SEGV_ACCADI";
378          case SEGV_ADIDERR:
379            return "SEGV_ADIDERR";
380          case SEGV_ADIPERR:
381            return "SEGV_ADIPERR";
382          case SEGV_MTEAERR:
383            return "SEGV_MTEAERR";
384          case SEGV_MTESERR:
385            return "SEGV_MTESERR";
386          case SEGV_CPERR:
387            return "SEGV_CPERR";
388        }
389        static_assert(NSIGSEGV == SEGV_CPERR, "missing SEGV_* si_code");
390        break;
391      case SIGSYS:
392        switch (si->si_code) {
393          case SYS_SECCOMP: return "SYS_SECCOMP";
394          case SYS_USER_DISPATCH:
395            return "SYS_USER_DISPATCH";
396        }
397        static_assert(NSIGSYS == SYS_USER_DISPATCH, "missing SYS_* si_code");
398        break;
399      case SIGTRAP:
400        switch (si->si_code) {
401          case TRAP_BRKPT: return "TRAP_BRKPT";
402          case TRAP_TRACE: return "TRAP_TRACE";
403          case TRAP_BRANCH: return "TRAP_BRANCH";
404          case TRAP_HWBKPT: return "TRAP_HWBKPT";
405          case TRAP_UNK:
406            return "TRAP_UNDIAGNOSED";
407          case TRAP_PERF:
408            return "TRAP_PERF";
409        }
410        if ((si->si_code & 0xff) == SIGTRAP) {
411          switch ((si->si_code >> 8) & 0xff) {
412            case PTRACE_EVENT_FORK:
413              return "PTRACE_EVENT_FORK";
414            case PTRACE_EVENT_VFORK:
415              return "PTRACE_EVENT_VFORK";
416            case PTRACE_EVENT_CLONE:
417              return "PTRACE_EVENT_CLONE";
418            case PTRACE_EVENT_EXEC:
419              return "PTRACE_EVENT_EXEC";
420            case PTRACE_EVENT_VFORK_DONE:
421              return "PTRACE_EVENT_VFORK_DONE";
422            case PTRACE_EVENT_EXIT:
423              return "PTRACE_EVENT_EXIT";
424            case PTRACE_EVENT_SECCOMP:
425              return "PTRACE_EVENT_SECCOMP";
426            case PTRACE_EVENT_STOP:
427              return "PTRACE_EVENT_STOP";
428          }
429        }
430        static_assert(NSIGTRAP == TRAP_PERF, "missing TRAP_* si_code");
431        break;
432    }
433    // Then the other codes...
434    switch (si->si_code) {
435      case SI_USER: return "SI_USER";
436      case SI_KERNEL: return "SI_KERNEL";
437      case SI_QUEUE: return "SI_QUEUE";
438      case SI_TIMER: return "SI_TIMER";
439      case SI_MESGQ: return "SI_MESGQ";
440      case SI_ASYNCIO: return "SI_ASYNCIO";
441      case SI_SIGIO: return "SI_SIGIO";
442      case SI_TKILL: return "SI_TKILL";
443      case SI_DETHREAD: return "SI_DETHREAD";
444    }
445    // Then give up...
446    return "?";
447  }
448  
log_backtrace(log_t * log,unwindstack::AndroidUnwinder * unwinder,unwindstack::AndroidUnwinderData & data,const char * prefix)449  void log_backtrace(log_t* log, unwindstack::AndroidUnwinder* unwinder,
450                     unwindstack::AndroidUnwinderData& data, const char* prefix) {
451    std::set<std::string> unreadable_elf_files;
452    for (const auto& frame : data.frames) {
453      if (frame.map_info != nullptr && frame.map_info->ElfFileNotReadable()) {
454        unreadable_elf_files.emplace(frame.map_info->name());
455      }
456    }
457  
458    // Put the preamble ahead of the backtrace.
459    if (!unreadable_elf_files.empty()) {
460      _LOG(log, logtype::BACKTRACE,
461           "%sNOTE: Function names and BuildId information is missing for some frames due\n", prefix);
462      _LOG(log, logtype::BACKTRACE,
463           "%sNOTE: to unreadable libraries. For unwinds of apps, only shared libraries\n", prefix);
464      _LOG(log, logtype::BACKTRACE, "%sNOTE: found under the lib/ directory are readable.\n", prefix);
465  #if defined(ROOT_POSSIBLE)
466      _LOG(log, logtype::BACKTRACE,
467           "%sNOTE: On this device, run setenforce 0 to make the libraries readable.\n", prefix);
468  #endif
469      _LOG(log, logtype::BACKTRACE, "%sNOTE: Unreadable libraries:\n", prefix);
470      for (auto& name : unreadable_elf_files) {
471        _LOG(log, logtype::BACKTRACE, "%sNOTE:   %s\n", prefix, name.c_str());
472      }
473    }
474  
475    for (const auto& frame : data.frames) {
476      _LOG(log, logtype::BACKTRACE, "%s%s\n", prefix, unwinder->FormatFrame(frame).c_str());
477    }
478  }
479