xref: /aosp_15_r20/external/tensorflow/tensorflow/python/distribute/distribute_utils_test.py (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Tests for utility functions in distribute_utils."""
16
17import collections
18import collections.abc
19
20from absl.testing import parameterized
21import wrapt
22
23from tensorflow.python.distribute import combinations
24from tensorflow.python.distribute import distribute_utils
25from tensorflow.python.distribute import strategy_combinations
26from tensorflow.python.distribute import values
27from tensorflow.python.eager import context
28from tensorflow.python.eager import test
29from tensorflow.python.framework import constant_op
30from tensorflow.python.framework import ops
31from tensorflow.python.ops import array_ops
32from tensorflow.python.ops import variable_scope
33from tensorflow.python.saved_model.model_utils import mode_keys
34
35
36def _nested_value(d):
37  return ("a" + d, ["b" + d, {"c": "d" + d, "e": "f" + d}, "g" + d], "h" + d)
38
39
40class RegroupAndSelectDeviceTest(test.TestCase, parameterized.TestCase):
41
42  def _is_per_replica(self, result, expected, klass=values.PerReplica):
43    self.assertIsInstance(result, klass)
44    for i, exp in enumerate(expected):
45      self.assertEqual(exp, result.values[i])
46
47  def testNested(self):
48    result = distribute_utils.regroup((_nested_value("1"), _nested_value("2")))
49    self.assertIsInstance(result, tuple)
50    self.assertLen(result, 3)
51    self._is_per_replica(result[0], ["a1", "a2"])
52    self._is_per_replica(result[2], ["h1", "h2"])
53
54    self.assertIsInstance(result[1], list)
55    self.assertLen(result[1], 3)
56    self._is_per_replica(result[1][0], ["b1", "b2"])
57    self._is_per_replica(result[1][2], ["g1", "g2"])
58
59    self.assertIsInstance(result[1][1], dict)
60    self.assertEqual(set(["c", "e"]), set(result[1][1].keys()))
61    self._is_per_replica(result[1][1]["c"], ["d1", "d2"])
62    self._is_per_replica(result[1][1]["e"], ["f1", "f2"])
63
64    # Also test that we can undo the merge using select_replica()
65    self.assertEqual(_nested_value("1"),
66                     distribute_utils.select_replica(0, result))
67    self.assertEqual(_nested_value("2"),
68                     distribute_utils.select_replica(1, result))
69    # select_device_mirrored() should fail due to non-mirrored values
70    with self.assertRaises(TypeError):
71      distribute_utils.select_replica_mirrored(0, result)
72    with self.assertRaises(TypeError):
73      distribute_utils.select_replica_mirrored(1, result)
74
75  def testRegroupKeepsDictBasedClass(self):
76    class DictBasedClass(dict):
77      """Dummy class inherited from a dict."""
78
79    result = distribute_utils.regroup(
80        (DictBasedClass(a="a1", b="b1"), DictBasedClass(a="a2", b="b2")))
81    self.assertIsInstance(result, DictBasedClass)
82    self._is_per_replica(result["a"], ["a1", "a2"])
83    self._is_per_replica(result["b"], ["b1", "b2"])
84
85  def testRegroupCollectionsMapping(self):
86
87    class CollectionsMappingBasedClass(collections.abc.Mapping):
88      """Class inherited from collections.abc.Mapping."""
89
90      def __init__(self, *args, **kwargs):
91        self._d = dict(*args, **kwargs)
92
93      def __getitem__(self, key):
94        return self._d.__getitem__(key)
95
96      def __iter__(self):
97        return iter(self._d)
98
99      def __len__(self):
100        return len(self._d)
101
102    result = distribute_utils.regroup(
103        (CollectionsMappingBasedClass(a="a1", b="b1"),
104         CollectionsMappingBasedClass(a="a2", b="b2")))
105    self.assertIsInstance(result, CollectionsMappingBasedClass)
106    self._is_per_replica(result["a"], ["a1", "a2"])
107    self._is_per_replica(result["b"], ["b1", "b2"])
108
109  def testWrapClass(self):
110    # Normally a mirrored value would be the same across devices, but
111    # for a test it is convenient to be able to tell the values apart.
112    result = distribute_utils.regroup((_nested_value("1"), _nested_value("2")),
113                                      values.Mirrored)
114    self.assertIsInstance(result, tuple)
115    self.assertLen(result, 3)
116    self._is_per_replica(result[0], ["a1", "a2"], values.Mirrored)
117    self._is_per_replica(result[2], ["h1", "h2"], values.Mirrored)
118
119    self.assertIsInstance(result[1], list)
120    self.assertLen(result[1], 3)
121    self._is_per_replica(result[1][0], ["b1", "b2"], values.Mirrored)
122    self._is_per_replica(result[1][2], ["g1", "g2"], values.Mirrored)
123
124    self.assertIsInstance(result[1][1], dict)
125    self.assertEqual(set(["c", "e"]), set(result[1][1].keys()))
126    self._is_per_replica(result[1][1]["c"], ["d1", "d2"], values.Mirrored)
127    self._is_per_replica(result[1][1]["e"], ["f1", "f2"], values.Mirrored)
128
129    # Also test that we can undo the merge using select_replica()
130    self.assertEqual(_nested_value("1"),
131                     distribute_utils.select_replica(0, result))
132    self.assertEqual(_nested_value("2"),
133                     distribute_utils.select_replica(1, result))
134    # Values are marked as mirrored, so select_device_mirrored() is allowed.
135    self.assertEqual(_nested_value("1"),
136                     distribute_utils.select_replica_mirrored(0, result))
137    self.assertEqual(_nested_value("2"),
138                     distribute_utils.select_replica_mirrored(1, result))
139
140  def testWrapAListOfTwoTuples(self):
141    result = distribute_utils.regroup([("1", "2"), ("3", "4")])
142    self.assertIsInstance(result, tuple)
143    self.assertLen(result, 2)
144    self._is_per_replica(result[0], ("1", "3"), values.PerReplica)
145    self._is_per_replica(result[1], ("2", "4"), values.PerReplica)
146
147  @combinations.generate(
148      combinations.combine(
149          distribution=[
150              strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
151              strategy_combinations.mirrored_strategy_with_one_cpu,
152          ],
153          mode=["graph", "eager"],
154      ))
155  def testMirroredContainer(self, distribution):
156    with distribution.scope():
157      v = variable_scope.variable(
158          1., aggregation=variable_scope.VariableAggregation.SUM)
159    self.assertTrue(distribute_utils.is_distributed_variable(v))
160    self.assertTrue(distribute_utils.is_distributed_variable(
161        distribute_utils.regroup(v.values)))
162
163  def testSameId(self):
164    foo = object()
165    result = distribute_utils.regroup((("a", foo), ("b", foo)))
166    self.assertIsInstance(result, tuple)
167    self.assertLen(result, 2)
168    self._is_per_replica(result[0], ["a", "b"])
169    self.assertIs(foo, result[1])
170
171    # Test select_replica(), should undo the merge done by regroup().
172    result_0 = distribute_utils.select_replica(0, result)
173    self.assertIsInstance(result_0, tuple)
174    self.assertLen(result_0, 2)
175    self.assertEqual("a", result_0[0])
176    self.assertIs(foo, result_0[1])
177    result_1 = distribute_utils.select_replica(1, result)
178    self.assertIsInstance(result_1, tuple)
179    self.assertLen(result_1, 2)
180    self.assertEqual("b", result_1[0])
181    self.assertIs(foo, result_1[1])
182
183  def testOneDevice(self):
184    result = distribute_utils.regroup((_nested_value("1"),))
185    # On one device regroup() and select_replica() are basically identity.
186    self.assertEqual(_nested_value("1"), result)
187    self.assertEqual(_nested_value("1"),
188                     distribute_utils.select_replica(0, result))
189
190  def testNamedTuple(self):
191
192    # We include toy implementations of Scaffold and EstimatorSpec to
193    # avoid a dependency on Estimator here.
194
195    class Scaffold(object):
196      pass
197
198    class EstimatorSpec(collections.namedtuple(
199        "EstimatorSpec", ["mode", "loss", "train_op", "scaffold"])):
200
201      def __new__(cls, mode, loss, train_op, scaffold=None):
202        return super(EstimatorSpec, cls).__new__(
203            cls, mode=mode, loss=loss, train_op=train_op,
204            scaffold=scaffold or Scaffold())
205
206    with context.graph_mode(), ops.Graph().as_default():
207      created_estimator_specs = []
208
209      for device_id in range(3):
210        spec = EstimatorSpec(
211            mode=mode_keys.EstimatorModeKeys.TRAIN,
212            loss=constant_op.constant(device_id / 2),
213            train_op=array_ops.identity(constant_op.constant(device_id)))
214        created_estimator_specs.append(spec)
215
216      merged_estimator_spec = distribute_utils.regroup(created_estimator_specs)
217
218      self.assertIsInstance(merged_estimator_spec, EstimatorSpec)
219      self.assertEqual(mode_keys.EstimatorModeKeys.TRAIN,
220                       merged_estimator_spec.mode)
221      for device_id in range(3):
222        self.assertEqual(created_estimator_specs[device_id].loss,
223                         merged_estimator_spec.loss.values[device_id])
224        self.assertEqual(created_estimator_specs[device_id].train_op,
225                         merged_estimator_spec.train_op.values[device_id])
226        # Scaffold is populated by `EstimatorSpec.__new__`.
227        self.assertEqual(created_estimator_specs[device_id].scaffold,
228                         merged_estimator_spec.scaffold.values[device_id])
229        self.assertIsInstance(created_estimator_specs[device_id].scaffold,
230                              Scaffold)
231        # Also test that we can undo the merge using select_replica()
232        self.assertEqual(created_estimator_specs[device_id],
233                         distribute_utils.select_replica(
234                             device_id, merged_estimator_spec))
235
236  def testWrappedNamedTuple(self):
237    Point = collections.namedtuple("Point", ["x", "y"])
238    point1 = Point(x=0, y=2)
239    point2 = Point(x=1, y=3)
240    wrapped1 = wrapt.ObjectProxy(point1)
241    wrapped2 = wrapt.ObjectProxy(point2)
242    result = distribute_utils.regroup([wrapped1, wrapped2])
243    self.assertEqual(result.x.values, (0, 1))
244    self.assertEqual(result.y.values, (2, 3))
245
246if __name__ == "__main__":
247  test.main()
248