xref: /aosp_15_r20/external/llvm/utils/TableGen/CodeGenDAGPatterns.cpp (revision 9880d6810fe72a1726cb53787c6711e909410d58)
1  //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is distributed under the University of Illinois Open Source
6  // License. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  //
10  // This file implements the CodeGenDAGPatterns class, which is used to read and
11  // represent the patterns present in a .td file for instructions.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "CodeGenDAGPatterns.h"
16  #include "llvm/ADT/STLExtras.h"
17  #include "llvm/ADT/SmallString.h"
18  #include "llvm/ADT/StringExtras.h"
19  #include "llvm/ADT/Twine.h"
20  #include "llvm/Support/Debug.h"
21  #include "llvm/Support/ErrorHandling.h"
22  #include "llvm/TableGen/Error.h"
23  #include "llvm/TableGen/Record.h"
24  #include <algorithm>
25  #include <cstdio>
26  #include <set>
27  using namespace llvm;
28  
29  #define DEBUG_TYPE "dag-patterns"
30  
31  //===----------------------------------------------------------------------===//
32  //  EEVT::TypeSet Implementation
33  //===----------------------------------------------------------------------===//
34  
isInteger(MVT::SimpleValueType VT)35  static inline bool isInteger(MVT::SimpleValueType VT) {
36    return MVT(VT).isInteger();
37  }
isFloatingPoint(MVT::SimpleValueType VT)38  static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
39    return MVT(VT).isFloatingPoint();
40  }
isVector(MVT::SimpleValueType VT)41  static inline bool isVector(MVT::SimpleValueType VT) {
42    return MVT(VT).isVector();
43  }
isScalar(MVT::SimpleValueType VT)44  static inline bool isScalar(MVT::SimpleValueType VT) {
45    return !MVT(VT).isVector();
46  }
47  
TypeSet(MVT::SimpleValueType VT,TreePattern & TP)48  EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
49    if (VT == MVT::iAny)
50      EnforceInteger(TP);
51    else if (VT == MVT::fAny)
52      EnforceFloatingPoint(TP);
53    else if (VT == MVT::vAny)
54      EnforceVector(TP);
55    else {
56      assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
57              VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!");
58      TypeVec.push_back(VT);
59    }
60  }
61  
62  
TypeSet(ArrayRef<MVT::SimpleValueType> VTList)63  EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
64    assert(!VTList.empty() && "empty list?");
65    TypeVec.append(VTList.begin(), VTList.end());
66  
67    if (!VTList.empty())
68      assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
69             VTList[0] != MVT::fAny);
70  
71    // Verify no duplicates.
72    array_pod_sort(TypeVec.begin(), TypeVec.end());
73    assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
74  }
75  
76  /// FillWithPossibleTypes - Set to all legal types and return true, only valid
77  /// on completely unknown type sets.
FillWithPossibleTypes(TreePattern & TP,bool (* Pred)(MVT::SimpleValueType),const char * PredicateName)78  bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
79                                            bool (*Pred)(MVT::SimpleValueType),
80                                            const char *PredicateName) {
81    assert(isCompletelyUnknown());
82    ArrayRef<MVT::SimpleValueType> LegalTypes =
83      TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
84  
85    if (TP.hasError())
86      return false;
87  
88    for (MVT::SimpleValueType VT : LegalTypes)
89      if (!Pred || Pred(VT))
90        TypeVec.push_back(VT);
91  
92    // If we have nothing that matches the predicate, bail out.
93    if (TypeVec.empty()) {
94      TP.error("Type inference contradiction found, no " +
95               std::string(PredicateName) + " types found");
96      return false;
97    }
98    // No need to sort with one element.
99    if (TypeVec.size() == 1) return true;
100  
101    // Remove duplicates.
102    array_pod_sort(TypeVec.begin(), TypeVec.end());
103    TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
104  
105    return true;
106  }
107  
108  /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
109  /// integer value type.
hasIntegerTypes() const110  bool EEVT::TypeSet::hasIntegerTypes() const {
111    return std::any_of(TypeVec.begin(), TypeVec.end(), isInteger);
112  }
113  
114  /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115  /// a floating point value type.
hasFloatingPointTypes() const116  bool EEVT::TypeSet::hasFloatingPointTypes() const {
117    return std::any_of(TypeVec.begin(), TypeVec.end(), isFloatingPoint);
118  }
119  
120  /// hasScalarTypes - Return true if this TypeSet contains a scalar value type.
hasScalarTypes() const121  bool EEVT::TypeSet::hasScalarTypes() const {
122    return std::any_of(TypeVec.begin(), TypeVec.end(), isScalar);
123  }
124  
125  /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
126  /// value type.
hasVectorTypes() const127  bool EEVT::TypeSet::hasVectorTypes() const {
128    return std::any_of(TypeVec.begin(), TypeVec.end(), isVector);
129  }
130  
131  
getName() const132  std::string EEVT::TypeSet::getName() const {
133    if (TypeVec.empty()) return "<empty>";
134  
135    std::string Result;
136  
137    for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
138      std::string VTName = llvm::getEnumName(TypeVec[i]);
139      // Strip off MVT:: prefix if present.
140      if (VTName.substr(0,5) == "MVT::")
141        VTName = VTName.substr(5);
142      if (i) Result += ':';
143      Result += VTName;
144    }
145  
146    if (TypeVec.size() == 1)
147      return Result;
148    return "{" + Result + "}";
149  }
150  
151  /// MergeInTypeInfo - This merges in type information from the specified
152  /// argument.  If 'this' changes, it returns true.  If the two types are
153  /// contradictory (e.g. merge f32 into i32) then this flags an error.
MergeInTypeInfo(const EEVT::TypeSet & InVT,TreePattern & TP)154  bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
155    if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
156      return false;
157  
158    if (isCompletelyUnknown()) {
159      *this = InVT;
160      return true;
161    }
162  
163    assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns");
164  
165    // Handle the abstract cases, seeing if we can resolve them better.
166    switch (TypeVec[0]) {
167    default: break;
168    case MVT::iPTR:
169    case MVT::iPTRAny:
170      if (InVT.hasIntegerTypes()) {
171        EEVT::TypeSet InCopy(InVT);
172        InCopy.EnforceInteger(TP);
173        InCopy.EnforceScalar(TP);
174  
175        if (InCopy.isConcrete()) {
176          // If the RHS has one integer type, upgrade iPTR to i32.
177          TypeVec[0] = InVT.TypeVec[0];
178          return true;
179        }
180  
181        // If the input has multiple scalar integers, this doesn't add any info.
182        if (!InCopy.isCompletelyUnknown())
183          return false;
184      }
185      break;
186    }
187  
188    // If the input constraint is iAny/iPTR and this is an integer type list,
189    // remove non-integer types from the list.
190    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
191        hasIntegerTypes()) {
192      bool MadeChange = EnforceInteger(TP);
193  
194      // If we're merging in iPTR/iPTRAny and the node currently has a list of
195      // multiple different integer types, replace them with a single iPTR.
196      if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
197          TypeVec.size() != 1) {
198        TypeVec.assign(1, InVT.TypeVec[0]);
199        MadeChange = true;
200      }
201  
202      return MadeChange;
203    }
204  
205    // If this is a type list and the RHS is a typelist as well, eliminate entries
206    // from this list that aren't in the other one.
207    TypeSet InputSet(*this);
208  
209    TypeVec.clear();
210    std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(),
211                          InVT.TypeVec.begin(), InVT.TypeVec.end(),
212                          std::back_inserter(TypeVec));
213  
214    // If the intersection is the same size as the original set then we're done.
215    if (TypeVec.size() == InputSet.TypeVec.size())
216      return false;
217  
218    // If we removed all of our types, we have a type contradiction.
219    if (!TypeVec.empty())
220      return true;
221  
222    // FIXME: Really want an SMLoc here!
223    TP.error("Type inference contradiction found, merging '" +
224             InVT.getName() + "' into '" + InputSet.getName() + "'");
225    return false;
226  }
227  
228  /// EnforceInteger - Remove all non-integer types from this set.
EnforceInteger(TreePattern & TP)229  bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
230    if (TP.hasError())
231      return false;
232    // If we know nothing, then get the full set.
233    if (TypeVec.empty())
234      return FillWithPossibleTypes(TP, isInteger, "integer");
235  
236    if (!hasFloatingPointTypes())
237      return false;
238  
239    TypeSet InputSet(*this);
240  
241    // Filter out all the fp types.
242    TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
243                                 std::not1(std::ptr_fun(isInteger))),
244                  TypeVec.end());
245  
246    if (TypeVec.empty()) {
247      TP.error("Type inference contradiction found, '" +
248               InputSet.getName() + "' needs to be integer");
249      return false;
250    }
251    return true;
252  }
253  
254  /// EnforceFloatingPoint - Remove all integer types from this set.
EnforceFloatingPoint(TreePattern & TP)255  bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
256    if (TP.hasError())
257      return false;
258    // If we know nothing, then get the full set.
259    if (TypeVec.empty())
260      return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
261  
262    if (!hasIntegerTypes())
263      return false;
264  
265    TypeSet InputSet(*this);
266  
267    // Filter out all the integer types.
268    TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
269                                 std::not1(std::ptr_fun(isFloatingPoint))),
270                  TypeVec.end());
271  
272    if (TypeVec.empty()) {
273      TP.error("Type inference contradiction found, '" +
274               InputSet.getName() + "' needs to be floating point");
275      return false;
276    }
277    return true;
278  }
279  
280  /// EnforceScalar - Remove all vector types from this.
EnforceScalar(TreePattern & TP)281  bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
282    if (TP.hasError())
283      return false;
284  
285    // If we know nothing, then get the full set.
286    if (TypeVec.empty())
287      return FillWithPossibleTypes(TP, isScalar, "scalar");
288  
289    if (!hasVectorTypes())
290      return false;
291  
292    TypeSet InputSet(*this);
293  
294    // Filter out all the vector types.
295    TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
296                                 std::not1(std::ptr_fun(isScalar))),
297                  TypeVec.end());
298  
299    if (TypeVec.empty()) {
300      TP.error("Type inference contradiction found, '" +
301               InputSet.getName() + "' needs to be scalar");
302      return false;
303    }
304    return true;
305  }
306  
307  /// EnforceVector - Remove all vector types from this.
EnforceVector(TreePattern & TP)308  bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
309    if (TP.hasError())
310      return false;
311  
312    // If we know nothing, then get the full set.
313    if (TypeVec.empty())
314      return FillWithPossibleTypes(TP, isVector, "vector");
315  
316    TypeSet InputSet(*this);
317    bool MadeChange = false;
318  
319    // Filter out all the scalar types.
320    TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
321                                 std::not1(std::ptr_fun(isVector))),
322                  TypeVec.end());
323  
324    if (TypeVec.empty()) {
325      TP.error("Type inference contradiction found, '" +
326               InputSet.getName() + "' needs to be a vector");
327      return false;
328    }
329    return MadeChange;
330  }
331  
332  
333  
334  /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors
335  /// this should be based on the element type. Update this and other based on
336  /// this information.
EnforceSmallerThan(EEVT::TypeSet & Other,TreePattern & TP)337  bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
338    if (TP.hasError())
339      return false;
340  
341    // Both operands must be integer or FP, but we don't care which.
342    bool MadeChange = false;
343  
344    if (isCompletelyUnknown())
345      MadeChange = FillWithPossibleTypes(TP);
346  
347    if (Other.isCompletelyUnknown())
348      MadeChange = Other.FillWithPossibleTypes(TP);
349  
350    // If one side is known to be integer or known to be FP but the other side has
351    // no information, get at least the type integrality info in there.
352    if (!hasFloatingPointTypes())
353      MadeChange |= Other.EnforceInteger(TP);
354    else if (!hasIntegerTypes())
355      MadeChange |= Other.EnforceFloatingPoint(TP);
356    if (!Other.hasFloatingPointTypes())
357      MadeChange |= EnforceInteger(TP);
358    else if (!Other.hasIntegerTypes())
359      MadeChange |= EnforceFloatingPoint(TP);
360  
361    assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
362           "Should have a type list now");
363  
364    // If one contains vectors but the other doesn't pull vectors out.
365    if (!hasVectorTypes())
366      MadeChange |= Other.EnforceScalar(TP);
367    else if (!hasScalarTypes())
368      MadeChange |= Other.EnforceVector(TP);
369    if (!Other.hasVectorTypes())
370      MadeChange |= EnforceScalar(TP);
371    else if (!Other.hasScalarTypes())
372      MadeChange |= EnforceVector(TP);
373  
374    // This code does not currently handle nodes which have multiple types,
375    // where some types are integer, and some are fp.  Assert that this is not
376    // the case.
377    assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
378           !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
379           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
380  
381    if (TP.hasError())
382      return false;
383  
384    // Okay, find the smallest type from current set and remove anything the
385    // same or smaller from the other set. We need to ensure that the scalar
386    // type size is smaller than the scalar size of the smallest type. For
387    // vectors, we also need to make sure that the total size is no larger than
388    // the size of the smallest type.
389    {
390      TypeSet InputSet(Other);
391      MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(),
392        [](MVT A, MVT B) {
393          return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
394                 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
395                  A.getSizeInBits() < B.getSizeInBits());
396        });
397  
398      auto I = std::remove_if(Other.TypeVec.begin(), Other.TypeVec.end(),
399        [Smallest](MVT OtherVT) {
400          // Don't compare vector and non-vector types.
401          if (OtherVT.isVector() != Smallest.isVector())
402            return false;
403          // The getSizeInBits() check here is only needed for vectors, but is
404          // a subset of the scalar check for scalars so no need to qualify.
405          return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits()||
406                 OtherVT.getSizeInBits() < Smallest.getSizeInBits();
407        });
408      MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types.
409      Other.TypeVec.erase(I, Other.TypeVec.end());
410  
411      if (Other.TypeVec.empty()) {
412        TP.error("Type inference contradiction found, '" + InputSet.getName() +
413                 "' has nothing larger than '" + getName() +"'!");
414        return false;
415      }
416    }
417  
418    // Okay, find the largest type from the other set and remove anything the
419    // same or smaller from the current set. We need to ensure that the scalar
420    // type size is larger than the scalar size of the largest type. For
421    // vectors, we also need to make sure that the total size is no smaller than
422    // the size of the largest type.
423    {
424      TypeSet InputSet(*this);
425      MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(),
426        [](MVT A, MVT B) {
427          return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
428                 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
429                  A.getSizeInBits() < B.getSizeInBits());
430        });
431      auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
432        [Largest](MVT OtherVT) {
433          // Don't compare vector and non-vector types.
434          if (OtherVT.isVector() != Largest.isVector())
435            return false;
436          return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() ||
437                 OtherVT.getSizeInBits() > Largest.getSizeInBits();
438        });
439      MadeChange |= I != TypeVec.end(); // If we're about to remove types.
440      TypeVec.erase(I, TypeVec.end());
441  
442      if (TypeVec.empty()) {
443        TP.error("Type inference contradiction found, '" + InputSet.getName() +
444                 "' has nothing smaller than '" + Other.getName() +"'!");
445        return false;
446      }
447    }
448  
449    return MadeChange;
450  }
451  
452  /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
453  /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(MVT::SimpleValueType VT,TreePattern & TP)454  bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT,
455                                             TreePattern &TP) {
456    bool MadeChange = false;
457  
458    MadeChange |= EnforceVector(TP);
459  
460    TypeSet InputSet(*this);
461  
462    // Filter out all the types which don't have the right element type.
463    auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
464      [VT](MVT VVT) {
465        return VVT.getVectorElementType().SimpleTy != VT;
466      });
467    MadeChange |= I != TypeVec.end();
468    TypeVec.erase(I, TypeVec.end());
469  
470    if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
471      TP.error("Type inference contradiction found, forcing '" +
472               InputSet.getName() + "' to have a vector element of type " +
473               getEnumName(VT));
474      return false;
475    }
476  
477    return MadeChange;
478  }
479  
480  /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
481  /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)482  bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
483                                             TreePattern &TP) {
484    if (TP.hasError())
485      return false;
486  
487    // "This" must be a vector and "VTOperand" must be a scalar.
488    bool MadeChange = false;
489    MadeChange |= EnforceVector(TP);
490    MadeChange |= VTOperand.EnforceScalar(TP);
491  
492    // If we know the vector type, it forces the scalar to agree.
493    if (isConcrete()) {
494      MVT IVT = getConcrete();
495      IVT = IVT.getVectorElementType();
496      return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
497    }
498  
499    // If the scalar type is known, filter out vector types whose element types
500    // disagree.
501    if (!VTOperand.isConcrete())
502      return MadeChange;
503  
504    MVT::SimpleValueType VT = VTOperand.getConcrete();
505  
506    MadeChange |= EnforceVectorEltTypeIs(VT, TP);
507  
508    return MadeChange;
509  }
510  
511  /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a
512  /// vector type specified by VTOperand.
EnforceVectorSubVectorTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)513  bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
514                                                   TreePattern &TP) {
515    if (TP.hasError())
516      return false;
517  
518    // "This" must be a vector and "VTOperand" must be a vector.
519    bool MadeChange = false;
520    MadeChange |= EnforceVector(TP);
521    MadeChange |= VTOperand.EnforceVector(TP);
522  
523    // If one side is known to be integer or known to be FP but the other side has
524    // no information, get at least the type integrality info in there.
525    if (!hasFloatingPointTypes())
526      MadeChange |= VTOperand.EnforceInteger(TP);
527    else if (!hasIntegerTypes())
528      MadeChange |= VTOperand.EnforceFloatingPoint(TP);
529    if (!VTOperand.hasFloatingPointTypes())
530      MadeChange |= EnforceInteger(TP);
531    else if (!VTOperand.hasIntegerTypes())
532      MadeChange |= EnforceFloatingPoint(TP);
533  
534    assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() &&
535           "Should have a type list now");
536  
537    // If we know the vector type, it forces the scalar types to agree.
538    // Also force one vector to have more elements than the other.
539    if (isConcrete()) {
540      MVT IVT = getConcrete();
541      unsigned NumElems = IVT.getVectorNumElements();
542      IVT = IVT.getVectorElementType();
543  
544      EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
545      MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
546  
547      // Only keep types that have less elements than VTOperand.
548      TypeSet InputSet(VTOperand);
549  
550      auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
551                              [NumElems](MVT VVT) {
552                                return VVT.getVectorNumElements() >= NumElems;
553                              });
554      MadeChange |= I != VTOperand.TypeVec.end();
555      VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
556  
557      if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
558        TP.error("Type inference contradiction found, forcing '" +
559                 InputSet.getName() + "' to have less vector elements than '" +
560                 getName() + "'");
561        return false;
562      }
563    } else if (VTOperand.isConcrete()) {
564      MVT IVT = VTOperand.getConcrete();
565      unsigned NumElems = IVT.getVectorNumElements();
566      IVT = IVT.getVectorElementType();
567  
568      EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
569      MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
570  
571      // Only keep types that have more elements than 'this'.
572      TypeSet InputSet(*this);
573  
574      auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
575                              [NumElems](MVT VVT) {
576                                return VVT.getVectorNumElements() <= NumElems;
577                              });
578      MadeChange |= I != TypeVec.end();
579      TypeVec.erase(I, TypeVec.end());
580  
581      if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
582        TP.error("Type inference contradiction found, forcing '" +
583                 InputSet.getName() + "' to have more vector elements than '" +
584                 VTOperand.getName() + "'");
585        return false;
586      }
587    }
588  
589    return MadeChange;
590  }
591  
592  /// EnforceVectorSameNumElts - 'this' is now constrained to
593  /// be a vector with same num elements as VTOperand.
EnforceVectorSameNumElts(EEVT::TypeSet & VTOperand,TreePattern & TP)594  bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand,
595                                               TreePattern &TP) {
596    if (TP.hasError())
597      return false;
598  
599    // "This" must be a vector and "VTOperand" must be a vector.
600    bool MadeChange = false;
601    MadeChange |= EnforceVector(TP);
602    MadeChange |= VTOperand.EnforceVector(TP);
603  
604    // If we know one of the vector types, it forces the other type to agree.
605    if (isConcrete()) {
606      MVT IVT = getConcrete();
607      unsigned NumElems = IVT.getVectorNumElements();
608  
609      // Only keep types that have same elements as 'this'.
610      TypeSet InputSet(VTOperand);
611  
612      auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
613                              [NumElems](MVT VVT) {
614                                return VVT.getVectorNumElements() != NumElems;
615                              });
616      MadeChange |= I != VTOperand.TypeVec.end();
617      VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
618  
619      if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
620        TP.error("Type inference contradiction found, forcing '" +
621                 InputSet.getName() + "' to have same number elements as '" +
622                 getName() + "'");
623        return false;
624      }
625    } else if (VTOperand.isConcrete()) {
626      MVT IVT = VTOperand.getConcrete();
627      unsigned NumElems = IVT.getVectorNumElements();
628  
629      // Only keep types that have same elements as VTOperand.
630      TypeSet InputSet(*this);
631  
632      auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
633                              [NumElems](MVT VVT) {
634                                return VVT.getVectorNumElements() != NumElems;
635                              });
636      MadeChange |= I != TypeVec.end();
637      TypeVec.erase(I, TypeVec.end());
638  
639      if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
640        TP.error("Type inference contradiction found, forcing '" +
641                 InputSet.getName() + "' to have same number elements than '" +
642                 VTOperand.getName() + "'");
643        return false;
644      }
645    }
646  
647    return MadeChange;
648  }
649  
650  /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand.
EnforceSameSize(EEVT::TypeSet & VTOperand,TreePattern & TP)651  bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand,
652                                      TreePattern &TP) {
653    if (TP.hasError())
654      return false;
655  
656    bool MadeChange = false;
657  
658    // If we know one of the types, it forces the other type agree.
659    if (isConcrete()) {
660      MVT IVT = getConcrete();
661      unsigned Size = IVT.getSizeInBits();
662  
663      // Only keep types that have the same size as 'this'.
664      TypeSet InputSet(VTOperand);
665  
666      auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
667                              [&](MVT VT) {
668                                return VT.getSizeInBits() != Size;
669                              });
670      MadeChange |= I != VTOperand.TypeVec.end();
671      VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
672  
673      if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
674        TP.error("Type inference contradiction found, forcing '" +
675                 InputSet.getName() + "' to have same size as '" +
676                 getName() + "'");
677        return false;
678      }
679    } else if (VTOperand.isConcrete()) {
680      MVT IVT = VTOperand.getConcrete();
681      unsigned Size = IVT.getSizeInBits();
682  
683      // Only keep types that have the same size as VTOperand.
684      TypeSet InputSet(*this);
685  
686      auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
687                              [&](MVT VT) {
688                                return VT.getSizeInBits() != Size;
689                              });
690      MadeChange |= I != TypeVec.end();
691      TypeVec.erase(I, TypeVec.end());
692  
693      if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
694        TP.error("Type inference contradiction found, forcing '" +
695                 InputSet.getName() + "' to have same size as '" +
696                 VTOperand.getName() + "'");
697        return false;
698      }
699    }
700  
701    return MadeChange;
702  }
703  
704  //===----------------------------------------------------------------------===//
705  // Helpers for working with extended types.
706  
707  /// Dependent variable map for CodeGenDAGPattern variant generation
708  typedef std::map<std::string, int> DepVarMap;
709  
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)710  static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
711    if (N->isLeaf()) {
712      if (isa<DefInit>(N->getLeafValue()))
713        DepMap[N->getName()]++;
714    } else {
715      for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
716        FindDepVarsOf(N->getChild(i), DepMap);
717    }
718  }
719  
720  /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)721  static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
722    DepVarMap depcounts;
723    FindDepVarsOf(N, depcounts);
724    for (const std::pair<std::string, int> &Pair : depcounts) {
725      if (Pair.second > 1)
726        DepVars.insert(Pair.first);
727    }
728  }
729  
730  #ifndef NDEBUG
731  /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)732  static void DumpDepVars(MultipleUseVarSet &DepVars) {
733    if (DepVars.empty()) {
734      DEBUG(errs() << "<empty set>");
735    } else {
736      DEBUG(errs() << "[ ");
737      for (const std::string &DepVar : DepVars) {
738        DEBUG(errs() << DepVar << " ");
739      }
740      DEBUG(errs() << "]");
741    }
742  }
743  #endif
744  
745  
746  //===----------------------------------------------------------------------===//
747  // TreePredicateFn Implementation
748  //===----------------------------------------------------------------------===//
749  
750  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)751  TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
752    assert((getPredCode().empty() || getImmCode().empty()) &&
753          ".td file corrupt: can't have a node predicate *and* an imm predicate");
754  }
755  
getPredCode() const756  std::string TreePredicateFn::getPredCode() const {
757    return PatFragRec->getRecord()->getValueAsString("PredicateCode");
758  }
759  
getImmCode() const760  std::string TreePredicateFn::getImmCode() const {
761    return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
762  }
763  
764  
765  /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const766  bool TreePredicateFn::isAlwaysTrue() const {
767    return getPredCode().empty() && getImmCode().empty();
768  }
769  
770  /// Return the name to use in the generated code to reference this, this is
771  /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const772  std::string TreePredicateFn::getFnName() const {
773    return "Predicate_" + PatFragRec->getRecord()->getName();
774  }
775  
776  /// getCodeToRunOnSDNode - Return the code for the function body that
777  /// evaluates this predicate.  The argument is expected to be in "Node",
778  /// not N.  This handles casting and conversion to a concrete node type as
779  /// appropriate.
getCodeToRunOnSDNode() const780  std::string TreePredicateFn::getCodeToRunOnSDNode() const {
781    // Handle immediate predicates first.
782    std::string ImmCode = getImmCode();
783    if (!ImmCode.empty()) {
784      std::string Result =
785        "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
786      return Result + ImmCode;
787    }
788  
789    // Handle arbitrary node predicates.
790    assert(!getPredCode().empty() && "Don't have any predicate code!");
791    std::string ClassName;
792    if (PatFragRec->getOnlyTree()->isLeaf())
793      ClassName = "SDNode";
794    else {
795      Record *Op = PatFragRec->getOnlyTree()->getOperator();
796      ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
797    }
798    std::string Result;
799    if (ClassName == "SDNode")
800      Result = "    SDNode *N = Node;\n";
801    else
802      Result = "    auto *N = cast<" + ClassName + ">(Node);\n";
803  
804    return Result + getPredCode();
805  }
806  
807  //===----------------------------------------------------------------------===//
808  // PatternToMatch implementation
809  //
810  
811  
812  /// getPatternSize - Return the 'size' of this pattern.  We want to match large
813  /// patterns before small ones.  This is used to determine the size of a
814  /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)815  static unsigned getPatternSize(const TreePatternNode *P,
816                                 const CodeGenDAGPatterns &CGP) {
817    unsigned Size = 3;  // The node itself.
818    // If the root node is a ConstantSDNode, increases its size.
819    // e.g. (set R32:$dst, 0).
820    if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
821      Size += 2;
822  
823    // FIXME: This is a hack to statically increase the priority of patterns
824    // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
825    // Later we can allow complexity / cost for each pattern to be (optionally)
826    // specified. To get best possible pattern match we'll need to dynamically
827    // calculate the complexity of all patterns a dag can potentially map to.
828    const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
829    if (AM) {
830      Size += AM->getNumOperands() * 3;
831  
832      // We don't want to count any children twice, so return early.
833      return Size;
834    }
835  
836    // If this node has some predicate function that must match, it adds to the
837    // complexity of this node.
838    if (!P->getPredicateFns().empty())
839      ++Size;
840  
841    // Count children in the count if they are also nodes.
842    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
843      TreePatternNode *Child = P->getChild(i);
844      if (!Child->isLeaf() && Child->getNumTypes() &&
845          Child->getType(0) != MVT::Other)
846        Size += getPatternSize(Child, CGP);
847      else if (Child->isLeaf()) {
848        if (isa<IntInit>(Child->getLeafValue()))
849          Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
850        else if (Child->getComplexPatternInfo(CGP))
851          Size += getPatternSize(Child, CGP);
852        else if (!Child->getPredicateFns().empty())
853          ++Size;
854      }
855    }
856  
857    return Size;
858  }
859  
860  /// Compute the complexity metric for the input pattern.  This roughly
861  /// corresponds to the number of nodes that are covered.
862  int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const863  getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
864    return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
865  }
866  
867  
868  /// getPredicateCheck - Return a single string containing all of this
869  /// pattern's predicates concatenated with "&&" operators.
870  ///
getPredicateCheck() const871  std::string PatternToMatch::getPredicateCheck() const {
872    SmallVector<Record *, 4> PredicateRecs;
873    for (Init *I : Predicates->getValues()) {
874      if (DefInit *Pred = dyn_cast<DefInit>(I)) {
875        Record *Def = Pred->getDef();
876        if (!Def->isSubClassOf("Predicate")) {
877  #ifndef NDEBUG
878          Def->dump();
879  #endif
880          llvm_unreachable("Unknown predicate type!");
881        }
882        PredicateRecs.push_back(Def);
883      }
884    }
885    // Sort so that different orders get canonicalized to the same string.
886    std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord());
887  
888    SmallString<128> PredicateCheck;
889    for (Record *Pred : PredicateRecs) {
890      if (!PredicateCheck.empty())
891        PredicateCheck += " && ";
892      PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")";
893    }
894  
895    return PredicateCheck.str();
896  }
897  
898  //===----------------------------------------------------------------------===//
899  // SDTypeConstraint implementation
900  //
901  
SDTypeConstraint(Record * R)902  SDTypeConstraint::SDTypeConstraint(Record *R) {
903    OperandNo = R->getValueAsInt("OperandNum");
904  
905    if (R->isSubClassOf("SDTCisVT")) {
906      ConstraintType = SDTCisVT;
907      x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
908      if (x.SDTCisVT_Info.VT == MVT::isVoid)
909        PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
910  
911    } else if (R->isSubClassOf("SDTCisPtrTy")) {
912      ConstraintType = SDTCisPtrTy;
913    } else if (R->isSubClassOf("SDTCisInt")) {
914      ConstraintType = SDTCisInt;
915    } else if (R->isSubClassOf("SDTCisFP")) {
916      ConstraintType = SDTCisFP;
917    } else if (R->isSubClassOf("SDTCisVec")) {
918      ConstraintType = SDTCisVec;
919    } else if (R->isSubClassOf("SDTCisSameAs")) {
920      ConstraintType = SDTCisSameAs;
921      x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
922    } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
923      ConstraintType = SDTCisVTSmallerThanOp;
924      x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
925        R->getValueAsInt("OtherOperandNum");
926    } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
927      ConstraintType = SDTCisOpSmallerThanOp;
928      x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
929        R->getValueAsInt("BigOperandNum");
930    } else if (R->isSubClassOf("SDTCisEltOfVec")) {
931      ConstraintType = SDTCisEltOfVec;
932      x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
933    } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
934      ConstraintType = SDTCisSubVecOfVec;
935      x.SDTCisSubVecOfVec_Info.OtherOperandNum =
936        R->getValueAsInt("OtherOpNum");
937    } else if (R->isSubClassOf("SDTCVecEltisVT")) {
938      ConstraintType = SDTCVecEltisVT;
939      x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
940      if (MVT(x.SDTCVecEltisVT_Info.VT).isVector())
941        PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT");
942      if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() &&
943          !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint())
944        PrintFatalError(R->getLoc(), "Must use integer or floating point type "
945                                     "as SDTCVecEltisVT");
946    } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
947      ConstraintType = SDTCisSameNumEltsAs;
948      x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
949        R->getValueAsInt("OtherOperandNum");
950    } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
951      ConstraintType = SDTCisSameSizeAs;
952      x.SDTCisSameSizeAs_Info.OtherOperandNum =
953        R->getValueAsInt("OtherOperandNum");
954    } else {
955      PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
956    }
957  }
958  
959  /// getOperandNum - Return the node corresponding to operand #OpNo in tree
960  /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)961  static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
962                                        const SDNodeInfo &NodeInfo,
963                                        unsigned &ResNo) {
964    unsigned NumResults = NodeInfo.getNumResults();
965    if (OpNo < NumResults) {
966      ResNo = OpNo;
967      return N;
968    }
969  
970    OpNo -= NumResults;
971  
972    if (OpNo >= N->getNumChildren()) {
973      std::string S;
974      raw_string_ostream OS(S);
975      OS << "Invalid operand number in type constraint "
976             << (OpNo+NumResults) << " ";
977      N->print(OS);
978      PrintFatalError(OS.str());
979    }
980  
981    return N->getChild(OpNo);
982  }
983  
984  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
985  /// constraint to the nodes operands.  This returns true if it makes a
986  /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const987  bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
988                                             const SDNodeInfo &NodeInfo,
989                                             TreePattern &TP) const {
990    if (TP.hasError())
991      return false;
992  
993    unsigned ResNo = 0; // The result number being referenced.
994    TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
995  
996    switch (ConstraintType) {
997    case SDTCisVT:
998      // Operand must be a particular type.
999      return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
1000    case SDTCisPtrTy:
1001      // Operand must be same as target pointer type.
1002      return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1003    case SDTCisInt:
1004      // Require it to be one of the legal integer VTs.
1005      return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
1006    case SDTCisFP:
1007      // Require it to be one of the legal fp VTs.
1008      return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
1009    case SDTCisVec:
1010      // Require it to be one of the legal vector VTs.
1011      return NodeToApply->getExtType(ResNo).EnforceVector(TP);
1012    case SDTCisSameAs: {
1013      unsigned OResNo = 0;
1014      TreePatternNode *OtherNode =
1015        getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1016      return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1017             OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1018    }
1019    case SDTCisVTSmallerThanOp: {
1020      // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1021      // have an integer type that is smaller than the VT.
1022      if (!NodeToApply->isLeaf() ||
1023          !isa<DefInit>(NodeToApply->getLeafValue()) ||
1024          !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1025                 ->isSubClassOf("ValueType")) {
1026        TP.error(N->getOperator()->getName() + " expects a VT operand!");
1027        return false;
1028      }
1029      MVT::SimpleValueType VT =
1030       getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
1031  
1032      EEVT::TypeSet TypeListTmp(VT, TP);
1033  
1034      unsigned OResNo = 0;
1035      TreePatternNode *OtherNode =
1036        getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1037                      OResNo);
1038  
1039      return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
1040    }
1041    case SDTCisOpSmallerThanOp: {
1042      unsigned BResNo = 0;
1043      TreePatternNode *BigOperand =
1044        getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1045                      BResNo);
1046      return NodeToApply->getExtType(ResNo).
1047                    EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
1048    }
1049    case SDTCisEltOfVec: {
1050      unsigned VResNo = 0;
1051      TreePatternNode *VecOperand =
1052        getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1053                      VResNo);
1054  
1055      // Filter vector types out of VecOperand that don't have the right element
1056      // type.
1057      return VecOperand->getExtType(VResNo).
1058        EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
1059    }
1060    case SDTCisSubVecOfVec: {
1061      unsigned VResNo = 0;
1062      TreePatternNode *BigVecOperand =
1063        getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1064                      VResNo);
1065  
1066      // Filter vector types out of BigVecOperand that don't have the
1067      // right subvector type.
1068      return BigVecOperand->getExtType(VResNo).
1069        EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
1070    }
1071    case SDTCVecEltisVT: {
1072      return NodeToApply->getExtType(ResNo).
1073        EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP);
1074    }
1075    case SDTCisSameNumEltsAs: {
1076      unsigned OResNo = 0;
1077      TreePatternNode *OtherNode =
1078        getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1079                      N, NodeInfo, OResNo);
1080      return OtherNode->getExtType(OResNo).
1081        EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP);
1082    }
1083    case SDTCisSameSizeAs: {
1084      unsigned OResNo = 0;
1085      TreePatternNode *OtherNode =
1086        getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1087                      N, NodeInfo, OResNo);
1088      return OtherNode->getExtType(OResNo).
1089        EnforceSameSize(NodeToApply->getExtType(ResNo), TP);
1090    }
1091    }
1092    llvm_unreachable("Invalid ConstraintType!");
1093  }
1094  
1095  // Update the node type to match an instruction operand or result as specified
1096  // in the ins or outs lists on the instruction definition. Return true if the
1097  // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)1098  bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1099                                               Record *Operand,
1100                                               TreePattern &TP) {
1101    // The 'unknown' operand indicates that types should be inferred from the
1102    // context.
1103    if (Operand->isSubClassOf("unknown_class"))
1104      return false;
1105  
1106    // The Operand class specifies a type directly.
1107    if (Operand->isSubClassOf("Operand"))
1108      return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
1109                            TP);
1110  
1111    // PointerLikeRegClass has a type that is determined at runtime.
1112    if (Operand->isSubClassOf("PointerLikeRegClass"))
1113      return UpdateNodeType(ResNo, MVT::iPTR, TP);
1114  
1115    // Both RegisterClass and RegisterOperand operands derive their types from a
1116    // register class def.
1117    Record *RC = nullptr;
1118    if (Operand->isSubClassOf("RegisterClass"))
1119      RC = Operand;
1120    else if (Operand->isSubClassOf("RegisterOperand"))
1121      RC = Operand->getValueAsDef("RegClass");
1122  
1123    assert(RC && "Unknown operand type");
1124    CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1125    return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1126  }
1127  
1128  
1129  //===----------------------------------------------------------------------===//
1130  // SDNodeInfo implementation
1131  //
SDNodeInfo(Record * R)1132  SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
1133    EnumName    = R->getValueAsString("Opcode");
1134    SDClassName = R->getValueAsString("SDClass");
1135    Record *TypeProfile = R->getValueAsDef("TypeProfile");
1136    NumResults = TypeProfile->getValueAsInt("NumResults");
1137    NumOperands = TypeProfile->getValueAsInt("NumOperands");
1138  
1139    // Parse the properties.
1140    Properties = 0;
1141    for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1142      if (Property->getName() == "SDNPCommutative") {
1143        Properties |= 1 << SDNPCommutative;
1144      } else if (Property->getName() == "SDNPAssociative") {
1145        Properties |= 1 << SDNPAssociative;
1146      } else if (Property->getName() == "SDNPHasChain") {
1147        Properties |= 1 << SDNPHasChain;
1148      } else if (Property->getName() == "SDNPOutGlue") {
1149        Properties |= 1 << SDNPOutGlue;
1150      } else if (Property->getName() == "SDNPInGlue") {
1151        Properties |= 1 << SDNPInGlue;
1152      } else if (Property->getName() == "SDNPOptInGlue") {
1153        Properties |= 1 << SDNPOptInGlue;
1154      } else if (Property->getName() == "SDNPMayStore") {
1155        Properties |= 1 << SDNPMayStore;
1156      } else if (Property->getName() == "SDNPMayLoad") {
1157        Properties |= 1 << SDNPMayLoad;
1158      } else if (Property->getName() == "SDNPSideEffect") {
1159        Properties |= 1 << SDNPSideEffect;
1160      } else if (Property->getName() == "SDNPMemOperand") {
1161        Properties |= 1 << SDNPMemOperand;
1162      } else if (Property->getName() == "SDNPVariadic") {
1163        Properties |= 1 << SDNPVariadic;
1164      } else {
1165        PrintFatalError("Unknown SD Node property '" +
1166                        Property->getName() + "' on node '" +
1167                        R->getName() + "'!");
1168      }
1169    }
1170  
1171  
1172    // Parse the type constraints.
1173    std::vector<Record*> ConstraintList =
1174      TypeProfile->getValueAsListOfDefs("Constraints");
1175    TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1176  }
1177  
1178  /// getKnownType - If the type constraints on this node imply a fixed type
1179  /// (e.g. all stores return void, etc), then return it as an
1180  /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1181  MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1182    unsigned NumResults = getNumResults();
1183    assert(NumResults <= 1 &&
1184           "We only work with nodes with zero or one result so far!");
1185    assert(ResNo == 0 && "Only handles single result nodes so far");
1186  
1187    for (const SDTypeConstraint &Constraint : TypeConstraints) {
1188      // Make sure that this applies to the correct node result.
1189      if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1190        continue;
1191  
1192      switch (Constraint.ConstraintType) {
1193      default: break;
1194      case SDTypeConstraint::SDTCisVT:
1195        return Constraint.x.SDTCisVT_Info.VT;
1196      case SDTypeConstraint::SDTCisPtrTy:
1197        return MVT::iPTR;
1198      }
1199    }
1200    return MVT::Other;
1201  }
1202  
1203  //===----------------------------------------------------------------------===//
1204  // TreePatternNode implementation
1205  //
1206  
~TreePatternNode()1207  TreePatternNode::~TreePatternNode() {
1208  #if 0 // FIXME: implement refcounted tree nodes!
1209    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1210      delete getChild(i);
1211  #endif
1212  }
1213  
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1214  static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1215    if (Operator->getName() == "set" ||
1216        Operator->getName() == "implicit")
1217      return 0;  // All return nothing.
1218  
1219    if (Operator->isSubClassOf("Intrinsic"))
1220      return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1221  
1222    if (Operator->isSubClassOf("SDNode"))
1223      return CDP.getSDNodeInfo(Operator).getNumResults();
1224  
1225    if (Operator->isSubClassOf("PatFrag")) {
1226      // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1227      // the forward reference case where one pattern fragment references another
1228      // before it is processed.
1229      if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1230        return PFRec->getOnlyTree()->getNumTypes();
1231  
1232      // Get the result tree.
1233      DagInit *Tree = Operator->getValueAsDag("Fragment");
1234      Record *Op = nullptr;
1235      if (Tree)
1236        if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1237          Op = DI->getDef();
1238      assert(Op && "Invalid Fragment");
1239      return GetNumNodeResults(Op, CDP);
1240    }
1241  
1242    if (Operator->isSubClassOf("Instruction")) {
1243      CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1244  
1245      unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1246  
1247      // Subtract any defaulted outputs.
1248      for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1249        Record *OperandNode = InstInfo.Operands[i].Rec;
1250  
1251        if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1252            !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1253          --NumDefsToAdd;
1254      }
1255  
1256      // Add on one implicit def if it has a resolvable type.
1257      if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1258        ++NumDefsToAdd;
1259      return NumDefsToAdd;
1260    }
1261  
1262    if (Operator->isSubClassOf("SDNodeXForm"))
1263      return 1;  // FIXME: Generalize SDNodeXForm
1264  
1265    if (Operator->isSubClassOf("ValueType"))
1266      return 1;  // A type-cast of one result.
1267  
1268    if (Operator->isSubClassOf("ComplexPattern"))
1269      return 1;
1270  
1271    Operator->dump();
1272    PrintFatalError("Unhandled node in GetNumNodeResults");
1273  }
1274  
print(raw_ostream & OS) const1275  void TreePatternNode::print(raw_ostream &OS) const {
1276    if (isLeaf())
1277      OS << *getLeafValue();
1278    else
1279      OS << '(' << getOperator()->getName();
1280  
1281    for (unsigned i = 0, e = Types.size(); i != e; ++i)
1282      OS << ':' << getExtType(i).getName();
1283  
1284    if (!isLeaf()) {
1285      if (getNumChildren() != 0) {
1286        OS << " ";
1287        getChild(0)->print(OS);
1288        for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1289          OS << ", ";
1290          getChild(i)->print(OS);
1291        }
1292      }
1293      OS << ")";
1294    }
1295  
1296    for (const TreePredicateFn &Pred : PredicateFns)
1297      OS << "<<P:" << Pred.getFnName() << ">>";
1298    if (TransformFn)
1299      OS << "<<X:" << TransformFn->getName() << ">>";
1300    if (!getName().empty())
1301      OS << ":$" << getName();
1302  
1303  }
dump() const1304  void TreePatternNode::dump() const {
1305    print(errs());
1306  }
1307  
1308  /// isIsomorphicTo - Return true if this node is recursively
1309  /// isomorphic to the specified node.  For this comparison, the node's
1310  /// entire state is considered. The assigned name is ignored, since
1311  /// nodes with differing names are considered isomorphic. However, if
1312  /// the assigned name is present in the dependent variable set, then
1313  /// the assigned name is considered significant and the node is
1314  /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1315  bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1316                                       const MultipleUseVarSet &DepVars) const {
1317    if (N == this) return true;
1318    if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1319        getPredicateFns() != N->getPredicateFns() ||
1320        getTransformFn() != N->getTransformFn())
1321      return false;
1322  
1323    if (isLeaf()) {
1324      if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1325        if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1326          return ((DI->getDef() == NDI->getDef())
1327                  && (DepVars.find(getName()) == DepVars.end()
1328                      || getName() == N->getName()));
1329        }
1330      }
1331      return getLeafValue() == N->getLeafValue();
1332    }
1333  
1334    if (N->getOperator() != getOperator() ||
1335        N->getNumChildren() != getNumChildren()) return false;
1336    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1337      if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1338        return false;
1339    return true;
1340  }
1341  
1342  /// clone - Make a copy of this tree and all of its children.
1343  ///
clone() const1344  TreePatternNode *TreePatternNode::clone() const {
1345    TreePatternNode *New;
1346    if (isLeaf()) {
1347      New = new TreePatternNode(getLeafValue(), getNumTypes());
1348    } else {
1349      std::vector<TreePatternNode*> CChildren;
1350      CChildren.reserve(Children.size());
1351      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1352        CChildren.push_back(getChild(i)->clone());
1353      New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1354    }
1355    New->setName(getName());
1356    New->Types = Types;
1357    New->setPredicateFns(getPredicateFns());
1358    New->setTransformFn(getTransformFn());
1359    return New;
1360  }
1361  
1362  /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1363  void TreePatternNode::RemoveAllTypes() {
1364    // Reset to unknown type.
1365    std::fill(Types.begin(), Types.end(), EEVT::TypeSet());
1366    if (isLeaf()) return;
1367    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1368      getChild(i)->RemoveAllTypes();
1369  }
1370  
1371  
1372  /// SubstituteFormalArguments - Replace the formal arguments in this tree
1373  /// with actual values specified by ArgMap.
1374  void TreePatternNode::
SubstituteFormalArguments(std::map<std::string,TreePatternNode * > & ArgMap)1375  SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1376    if (isLeaf()) return;
1377  
1378    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1379      TreePatternNode *Child = getChild(i);
1380      if (Child->isLeaf()) {
1381        Init *Val = Child->getLeafValue();
1382        // Note that, when substituting into an output pattern, Val might be an
1383        // UnsetInit.
1384        if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1385            cast<DefInit>(Val)->getDef()->getName() == "node")) {
1386          // We found a use of a formal argument, replace it with its value.
1387          TreePatternNode *NewChild = ArgMap[Child->getName()];
1388          assert(NewChild && "Couldn't find formal argument!");
1389          assert((Child->getPredicateFns().empty() ||
1390                  NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1391                 "Non-empty child predicate clobbered!");
1392          setChild(i, NewChild);
1393        }
1394      } else {
1395        getChild(i)->SubstituteFormalArguments(ArgMap);
1396      }
1397    }
1398  }
1399  
1400  
1401  /// InlinePatternFragments - If this pattern refers to any pattern
1402  /// fragments, inline them into place, giving us a pattern without any
1403  /// PatFrag references.
InlinePatternFragments(TreePattern & TP)1404  TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1405    if (TP.hasError())
1406      return nullptr;
1407  
1408    if (isLeaf())
1409       return this;  // nothing to do.
1410    Record *Op = getOperator();
1411  
1412    if (!Op->isSubClassOf("PatFrag")) {
1413      // Just recursively inline children nodes.
1414      for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1415        TreePatternNode *Child = getChild(i);
1416        TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1417  
1418        assert((Child->getPredicateFns().empty() ||
1419                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1420               "Non-empty child predicate clobbered!");
1421  
1422        setChild(i, NewChild);
1423      }
1424      return this;
1425    }
1426  
1427    // Otherwise, we found a reference to a fragment.  First, look up its
1428    // TreePattern record.
1429    TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1430  
1431    // Verify that we are passing the right number of operands.
1432    if (Frag->getNumArgs() != Children.size()) {
1433      TP.error("'" + Op->getName() + "' fragment requires " +
1434               utostr(Frag->getNumArgs()) + " operands!");
1435      return nullptr;
1436    }
1437  
1438    TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1439  
1440    TreePredicateFn PredFn(Frag);
1441    if (!PredFn.isAlwaysTrue())
1442      FragTree->addPredicateFn(PredFn);
1443  
1444    // Resolve formal arguments to their actual value.
1445    if (Frag->getNumArgs()) {
1446      // Compute the map of formal to actual arguments.
1447      std::map<std::string, TreePatternNode*> ArgMap;
1448      for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1449        ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1450  
1451      FragTree->SubstituteFormalArguments(ArgMap);
1452    }
1453  
1454    FragTree->setName(getName());
1455    for (unsigned i = 0, e = Types.size(); i != e; ++i)
1456      FragTree->UpdateNodeType(i, getExtType(i), TP);
1457  
1458    // Transfer in the old predicates.
1459    for (const TreePredicateFn &Pred : getPredicateFns())
1460      FragTree->addPredicateFn(Pred);
1461  
1462    // Get a new copy of this fragment to stitch into here.
1463    //delete this;    // FIXME: implement refcounting!
1464  
1465    // The fragment we inlined could have recursive inlining that is needed.  See
1466    // if there are any pattern fragments in it and inline them as needed.
1467    return FragTree->InlinePatternFragments(TP);
1468  }
1469  
1470  /// getImplicitType - Check to see if the specified record has an implicit
1471  /// type which should be applied to it.  This will infer the type of register
1472  /// references from the register file information, for example.
1473  ///
1474  /// When Unnamed is set, return the type of a DAG operand with no name, such as
1475  /// the F8RC register class argument in:
1476  ///
1477  ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1478  ///
1479  /// When Unnamed is false, return the type of a named DAG operand such as the
1480  /// GPR:$src operand above.
1481  ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)1482  static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1483                                       bool NotRegisters,
1484                                       bool Unnamed,
1485                                       TreePattern &TP) {
1486    // Check to see if this is a register operand.
1487    if (R->isSubClassOf("RegisterOperand")) {
1488      assert(ResNo == 0 && "Regoperand ref only has one result!");
1489      if (NotRegisters)
1490        return EEVT::TypeSet(); // Unknown.
1491      Record *RegClass = R->getValueAsDef("RegClass");
1492      const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1493      return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1494    }
1495  
1496    // Check to see if this is a register or a register class.
1497    if (R->isSubClassOf("RegisterClass")) {
1498      assert(ResNo == 0 && "Regclass ref only has one result!");
1499      // An unnamed register class represents itself as an i32 immediate, for
1500      // example on a COPY_TO_REGCLASS instruction.
1501      if (Unnamed)
1502        return EEVT::TypeSet(MVT::i32, TP);
1503  
1504      // In a named operand, the register class provides the possible set of
1505      // types.
1506      if (NotRegisters)
1507        return EEVT::TypeSet(); // Unknown.
1508      const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1509      return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1510    }
1511  
1512    if (R->isSubClassOf("PatFrag")) {
1513      assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1514      // Pattern fragment types will be resolved when they are inlined.
1515      return EEVT::TypeSet(); // Unknown.
1516    }
1517  
1518    if (R->isSubClassOf("Register")) {
1519      assert(ResNo == 0 && "Registers only produce one result!");
1520      if (NotRegisters)
1521        return EEVT::TypeSet(); // Unknown.
1522      const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1523      return EEVT::TypeSet(T.getRegisterVTs(R));
1524    }
1525  
1526    if (R->isSubClassOf("SubRegIndex")) {
1527      assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1528      return EEVT::TypeSet(MVT::i32, TP);
1529    }
1530  
1531    if (R->isSubClassOf("ValueType")) {
1532      assert(ResNo == 0 && "This node only has one result!");
1533      // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1534      //
1535      //   (sext_inreg GPR:$src, i16)
1536      //                         ~~~
1537      if (Unnamed)
1538        return EEVT::TypeSet(MVT::Other, TP);
1539      // With a name, the ValueType simply provides the type of the named
1540      // variable.
1541      //
1542      //   (sext_inreg i32:$src, i16)
1543      //               ~~~~~~~~
1544      if (NotRegisters)
1545        return EEVT::TypeSet(); // Unknown.
1546      return EEVT::TypeSet(getValueType(R), TP);
1547    }
1548  
1549    if (R->isSubClassOf("CondCode")) {
1550      assert(ResNo == 0 && "This node only has one result!");
1551      // Using a CondCodeSDNode.
1552      return EEVT::TypeSet(MVT::Other, TP);
1553    }
1554  
1555    if (R->isSubClassOf("ComplexPattern")) {
1556      assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1557      if (NotRegisters)
1558        return EEVT::TypeSet(); // Unknown.
1559     return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1560                           TP);
1561    }
1562    if (R->isSubClassOf("PointerLikeRegClass")) {
1563      assert(ResNo == 0 && "Regclass can only have one result!");
1564      return EEVT::TypeSet(MVT::iPTR, TP);
1565    }
1566  
1567    if (R->getName() == "node" || R->getName() == "srcvalue" ||
1568        R->getName() == "zero_reg") {
1569      // Placeholder.
1570      return EEVT::TypeSet(); // Unknown.
1571    }
1572  
1573    if (R->isSubClassOf("Operand"))
1574      return EEVT::TypeSet(getValueType(R->getValueAsDef("Type")));
1575  
1576    TP.error("Unknown node flavor used in pattern: " + R->getName());
1577    return EEVT::TypeSet(MVT::Other, TP);
1578  }
1579  
1580  
1581  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1582  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1583  const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const1584  getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1585    if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1586        getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1587        getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1588      return nullptr;
1589  
1590    unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1591    return &CDP.getIntrinsicInfo(IID);
1592  }
1593  
1594  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1595  /// return the ComplexPattern information, otherwise return null.
1596  const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const1597  TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1598    Record *Rec;
1599    if (isLeaf()) {
1600      DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1601      if (!DI)
1602        return nullptr;
1603      Rec = DI->getDef();
1604    } else
1605      Rec = getOperator();
1606  
1607    if (!Rec->isSubClassOf("ComplexPattern"))
1608      return nullptr;
1609    return &CGP.getComplexPattern(Rec);
1610  }
1611  
getNumMIResults(const CodeGenDAGPatterns & CGP) const1612  unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
1613    // A ComplexPattern specifically declares how many results it fills in.
1614    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1615      return CP->getNumOperands();
1616  
1617    // If MIOperandInfo is specified, that gives the count.
1618    if (isLeaf()) {
1619      DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1620      if (DI && DI->getDef()->isSubClassOf("Operand")) {
1621        DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
1622        if (MIOps->getNumArgs())
1623          return MIOps->getNumArgs();
1624      }
1625    }
1626  
1627    // Otherwise there is just one result.
1628    return 1;
1629  }
1630  
1631  /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1632  bool TreePatternNode::NodeHasProperty(SDNP Property,
1633                                        const CodeGenDAGPatterns &CGP) const {
1634    if (isLeaf()) {
1635      if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1636        return CP->hasProperty(Property);
1637      return false;
1638    }
1639  
1640    Record *Operator = getOperator();
1641    if (!Operator->isSubClassOf("SDNode")) return false;
1642  
1643    return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1644  }
1645  
1646  
1647  
1648  
1649  /// TreeHasProperty - Return true if any node in this tree has the specified
1650  /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1651  bool TreePatternNode::TreeHasProperty(SDNP Property,
1652                                        const CodeGenDAGPatterns &CGP) const {
1653    if (NodeHasProperty(Property, CGP))
1654      return true;
1655    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1656      if (getChild(i)->TreeHasProperty(Property, CGP))
1657        return true;
1658    return false;
1659  }
1660  
1661  /// isCommutativeIntrinsic - Return true if the node corresponds to a
1662  /// commutative intrinsic.
1663  bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const1664  TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1665    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1666      return Int->isCommutative;
1667    return false;
1668  }
1669  
isOperandClass(const TreePatternNode * N,StringRef Class)1670  static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
1671    if (!N->isLeaf())
1672      return N->getOperator()->isSubClassOf(Class);
1673  
1674    DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
1675    if (DI && DI->getDef()->isSubClassOf(Class))
1676      return true;
1677  
1678    return false;
1679  }
1680  
emitTooManyOperandsError(TreePattern & TP,StringRef InstName,unsigned Expected,unsigned Actual)1681  static void emitTooManyOperandsError(TreePattern &TP,
1682                                       StringRef InstName,
1683                                       unsigned Expected,
1684                                       unsigned Actual) {
1685    TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
1686             " operands but expected only " + Twine(Expected) + "!");
1687  }
1688  
emitTooFewOperandsError(TreePattern & TP,StringRef InstName,unsigned Actual)1689  static void emitTooFewOperandsError(TreePattern &TP,
1690                                      StringRef InstName,
1691                                      unsigned Actual) {
1692    TP.error("Instruction '" + InstName +
1693             "' expects more than the provided " + Twine(Actual) + " operands!");
1694  }
1695  
1696  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1697  /// this node and its children in the tree.  This returns true if it makes a
1698  /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)1699  bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1700    if (TP.hasError())
1701      return false;
1702  
1703    CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1704    if (isLeaf()) {
1705      if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1706        // If it's a regclass or something else known, include the type.
1707        bool MadeChange = false;
1708        for (unsigned i = 0, e = Types.size(); i != e; ++i)
1709          MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1710                                                          NotRegisters,
1711                                                          !hasName(), TP), TP);
1712        return MadeChange;
1713      }
1714  
1715      if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1716        assert(Types.size() == 1 && "Invalid IntInit");
1717  
1718        // Int inits are always integers. :)
1719        bool MadeChange = Types[0].EnforceInteger(TP);
1720  
1721        if (!Types[0].isConcrete())
1722          return MadeChange;
1723  
1724        MVT::SimpleValueType VT = getType(0);
1725        if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1726          return MadeChange;
1727  
1728        unsigned Size = MVT(VT).getSizeInBits();
1729        // Make sure that the value is representable for this type.
1730        if (Size >= 32) return MadeChange;
1731  
1732        // Check that the value doesn't use more bits than we have. It must either
1733        // be a sign- or zero-extended equivalent of the original.
1734        int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1735        if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1736          return MadeChange;
1737  
1738        TP.error("Integer value '" + itostr(II->getValue()) +
1739                 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1740        return false;
1741      }
1742      return false;
1743    }
1744  
1745    // special handling for set, which isn't really an SDNode.
1746    if (getOperator()->getName() == "set") {
1747      assert(getNumTypes() == 0 && "Set doesn't produce a value");
1748      assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1749      unsigned NC = getNumChildren();
1750  
1751      TreePatternNode *SetVal = getChild(NC-1);
1752      bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1753  
1754      for (unsigned i = 0; i < NC-1; ++i) {
1755        TreePatternNode *Child = getChild(i);
1756        MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1757  
1758        // Types of operands must match.
1759        MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1760        MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1761      }
1762      return MadeChange;
1763    }
1764  
1765    if (getOperator()->getName() == "implicit") {
1766      assert(getNumTypes() == 0 && "Node doesn't produce a value");
1767  
1768      bool MadeChange = false;
1769      for (unsigned i = 0; i < getNumChildren(); ++i)
1770        MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1771      return MadeChange;
1772    }
1773  
1774    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1775      bool MadeChange = false;
1776  
1777      // Apply the result type to the node.
1778      unsigned NumRetVTs = Int->IS.RetVTs.size();
1779      unsigned NumParamVTs = Int->IS.ParamVTs.size();
1780  
1781      for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1782        MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1783  
1784      if (getNumChildren() != NumParamVTs + 1) {
1785        TP.error("Intrinsic '" + Int->Name + "' expects " +
1786                 utostr(NumParamVTs) + " operands, not " +
1787                 utostr(getNumChildren() - 1) + " operands!");
1788        return false;
1789      }
1790  
1791      // Apply type info to the intrinsic ID.
1792      MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1793  
1794      for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1795        MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1796  
1797        MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1798        assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1799        MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1800      }
1801      return MadeChange;
1802    }
1803  
1804    if (getOperator()->isSubClassOf("SDNode")) {
1805      const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1806  
1807      // Check that the number of operands is sane.  Negative operands -> varargs.
1808      if (NI.getNumOperands() >= 0 &&
1809          getNumChildren() != (unsigned)NI.getNumOperands()) {
1810        TP.error(getOperator()->getName() + " node requires exactly " +
1811                 itostr(NI.getNumOperands()) + " operands!");
1812        return false;
1813      }
1814  
1815      bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1816      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1817        MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1818      return MadeChange;
1819    }
1820  
1821    if (getOperator()->isSubClassOf("Instruction")) {
1822      const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1823      CodeGenInstruction &InstInfo =
1824        CDP.getTargetInfo().getInstruction(getOperator());
1825  
1826      bool MadeChange = false;
1827  
1828      // Apply the result types to the node, these come from the things in the
1829      // (outs) list of the instruction.
1830      unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
1831                                          Inst.getNumResults());
1832      for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1833        MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1834  
1835      // If the instruction has implicit defs, we apply the first one as a result.
1836      // FIXME: This sucks, it should apply all implicit defs.
1837      if (!InstInfo.ImplicitDefs.empty()) {
1838        unsigned ResNo = NumResultsToAdd;
1839  
1840        // FIXME: Generalize to multiple possible types and multiple possible
1841        // ImplicitDefs.
1842        MVT::SimpleValueType VT =
1843          InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1844  
1845        if (VT != MVT::Other)
1846          MadeChange |= UpdateNodeType(ResNo, VT, TP);
1847      }
1848  
1849      // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1850      // be the same.
1851      if (getOperator()->getName() == "INSERT_SUBREG") {
1852        assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1853        MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1854        MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1855      } else if (getOperator()->getName() == "REG_SEQUENCE") {
1856        // We need to do extra, custom typechecking for REG_SEQUENCE since it is
1857        // variadic.
1858  
1859        unsigned NChild = getNumChildren();
1860        if (NChild < 3) {
1861          TP.error("REG_SEQUENCE requires at least 3 operands!");
1862          return false;
1863        }
1864  
1865        if (NChild % 2 == 0) {
1866          TP.error("REG_SEQUENCE requires an odd number of operands!");
1867          return false;
1868        }
1869  
1870        if (!isOperandClass(getChild(0), "RegisterClass")) {
1871          TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
1872          return false;
1873        }
1874  
1875        for (unsigned I = 1; I < NChild; I += 2) {
1876          TreePatternNode *SubIdxChild = getChild(I + 1);
1877          if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
1878            TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
1879                     itostr(I + 1) + "!");
1880            return false;
1881          }
1882        }
1883      }
1884  
1885      unsigned ChildNo = 0;
1886      for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1887        Record *OperandNode = Inst.getOperand(i);
1888  
1889        // If the instruction expects a predicate or optional def operand, we
1890        // codegen this by setting the operand to it's default value if it has a
1891        // non-empty DefaultOps field.
1892        if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1893            !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1894          continue;
1895  
1896        // Verify that we didn't run out of provided operands.
1897        if (ChildNo >= getNumChildren()) {
1898          emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
1899          return false;
1900        }
1901  
1902        TreePatternNode *Child = getChild(ChildNo++);
1903        unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1904  
1905        // If the operand has sub-operands, they may be provided by distinct
1906        // child patterns, so attempt to match each sub-operand separately.
1907        if (OperandNode->isSubClassOf("Operand")) {
1908          DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1909          if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1910            // But don't do that if the whole operand is being provided by
1911            // a single ComplexPattern-related Operand.
1912  
1913            if (Child->getNumMIResults(CDP) < NumArgs) {
1914              // Match first sub-operand against the child we already have.
1915              Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1916              MadeChange |=
1917                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1918  
1919              // And the remaining sub-operands against subsequent children.
1920              for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1921                if (ChildNo >= getNumChildren()) {
1922                  emitTooFewOperandsError(TP, getOperator()->getName(),
1923                                          getNumChildren());
1924                  return false;
1925                }
1926                Child = getChild(ChildNo++);
1927  
1928                SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1929                MadeChange |=
1930                  Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1931              }
1932              continue;
1933            }
1934          }
1935        }
1936  
1937        // If we didn't match by pieces above, attempt to match the whole
1938        // operand now.
1939        MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1940      }
1941  
1942      if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
1943        emitTooManyOperandsError(TP, getOperator()->getName(),
1944                                 ChildNo, getNumChildren());
1945        return false;
1946      }
1947  
1948      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1949        MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1950      return MadeChange;
1951    }
1952  
1953    if (getOperator()->isSubClassOf("ComplexPattern")) {
1954      bool MadeChange = false;
1955  
1956      for (unsigned i = 0; i < getNumChildren(); ++i)
1957        MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1958  
1959      return MadeChange;
1960    }
1961  
1962    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1963  
1964    // Node transforms always take one operand.
1965    if (getNumChildren() != 1) {
1966      TP.error("Node transform '" + getOperator()->getName() +
1967               "' requires one operand!");
1968      return false;
1969    }
1970  
1971    bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1972  
1973  
1974    // If either the output or input of the xform does not have exact
1975    // type info. We assume they must be the same. Otherwise, it is perfectly
1976    // legal to transform from one type to a completely different type.
1977  #if 0
1978    if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1979      bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1980      MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1981      return MadeChange;
1982    }
1983  #endif
1984    return MadeChange;
1985  }
1986  
1987  /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1988  /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)1989  static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1990    if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1991      return true;
1992    if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1993      return true;
1994    return false;
1995  }
1996  
1997  
1998  /// canPatternMatch - If it is impossible for this pattern to match on this
1999  /// target, fill in Reason and return false.  Otherwise, return true.  This is
2000  /// used as a sanity check for .td files (to prevent people from writing stuff
2001  /// that can never possibly work), and to prevent the pattern permuter from
2002  /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)2003  bool TreePatternNode::canPatternMatch(std::string &Reason,
2004                                        const CodeGenDAGPatterns &CDP) {
2005    if (isLeaf()) return true;
2006  
2007    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2008      if (!getChild(i)->canPatternMatch(Reason, CDP))
2009        return false;
2010  
2011    // If this is an intrinsic, handle cases that would make it not match.  For
2012    // example, if an operand is required to be an immediate.
2013    if (getOperator()->isSubClassOf("Intrinsic")) {
2014      // TODO:
2015      return true;
2016    }
2017  
2018    if (getOperator()->isSubClassOf("ComplexPattern"))
2019      return true;
2020  
2021    // If this node is a commutative operator, check that the LHS isn't an
2022    // immediate.
2023    const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2024    bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2025    if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2026      // Scan all of the operands of the node and make sure that only the last one
2027      // is a constant node, unless the RHS also is.
2028      if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2029        bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2030        for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2031          if (OnlyOnRHSOfCommutative(getChild(i))) {
2032            Reason="Immediate value must be on the RHS of commutative operators!";
2033            return false;
2034          }
2035      }
2036    }
2037  
2038    return true;
2039  }
2040  
2041  //===----------------------------------------------------------------------===//
2042  // TreePattern implementation
2043  //
2044  
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)2045  TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2046                           CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2047                           isInputPattern(isInput), HasError(false) {
2048    for (Init *I : RawPat->getValues())
2049      Trees.push_back(ParseTreePattern(I, ""));
2050  }
2051  
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)2052  TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2053                           CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2054                           isInputPattern(isInput), HasError(false) {
2055    Trees.push_back(ParseTreePattern(Pat, ""));
2056  }
2057  
TreePattern(Record * TheRec,TreePatternNode * Pat,bool isInput,CodeGenDAGPatterns & cdp)2058  TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2059                           CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2060                           isInputPattern(isInput), HasError(false) {
2061    Trees.push_back(Pat);
2062  }
2063  
error(const Twine & Msg)2064  void TreePattern::error(const Twine &Msg) {
2065    if (HasError)
2066      return;
2067    dump();
2068    PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2069    HasError = true;
2070  }
2071  
ComputeNamedNodes()2072  void TreePattern::ComputeNamedNodes() {
2073    for (TreePatternNode *Tree : Trees)
2074      ComputeNamedNodes(Tree);
2075  }
2076  
ComputeNamedNodes(TreePatternNode * N)2077  void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2078    if (!N->getName().empty())
2079      NamedNodes[N->getName()].push_back(N);
2080  
2081    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2082      ComputeNamedNodes(N->getChild(i));
2083  }
2084  
2085  
ParseTreePattern(Init * TheInit,StringRef OpName)2086  TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2087    if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2088      Record *R = DI->getDef();
2089  
2090      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2091      // TreePatternNode of its own.  For example:
2092      ///   (foo GPR, imm) -> (foo GPR, (imm))
2093      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2094        return ParseTreePattern(
2095          DagInit::get(DI, "",
2096                       std::vector<std::pair<Init*, std::string> >()),
2097          OpName);
2098  
2099      // Input argument?
2100      TreePatternNode *Res = new TreePatternNode(DI, 1);
2101      if (R->getName() == "node" && !OpName.empty()) {
2102        if (OpName.empty())
2103          error("'node' argument requires a name to match with operand list");
2104        Args.push_back(OpName);
2105      }
2106  
2107      Res->setName(OpName);
2108      return Res;
2109    }
2110  
2111    // ?:$name or just $name.
2112    if (isa<UnsetInit>(TheInit)) {
2113      if (OpName.empty())
2114        error("'?' argument requires a name to match with operand list");
2115      TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2116      Args.push_back(OpName);
2117      Res->setName(OpName);
2118      return Res;
2119    }
2120  
2121    if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2122      if (!OpName.empty())
2123        error("Constant int argument should not have a name!");
2124      return new TreePatternNode(II, 1);
2125    }
2126  
2127    if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2128      // Turn this into an IntInit.
2129      Init *II = BI->convertInitializerTo(IntRecTy::get());
2130      if (!II || !isa<IntInit>(II))
2131        error("Bits value must be constants!");
2132      return ParseTreePattern(II, OpName);
2133    }
2134  
2135    DagInit *Dag = dyn_cast<DagInit>(TheInit);
2136    if (!Dag) {
2137      TheInit->dump();
2138      error("Pattern has unexpected init kind!");
2139    }
2140    DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2141    if (!OpDef) error("Pattern has unexpected operator type!");
2142    Record *Operator = OpDef->getDef();
2143  
2144    if (Operator->isSubClassOf("ValueType")) {
2145      // If the operator is a ValueType, then this must be "type cast" of a leaf
2146      // node.
2147      if (Dag->getNumArgs() != 1)
2148        error("Type cast only takes one operand!");
2149  
2150      TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
2151  
2152      // Apply the type cast.
2153      assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2154      New->UpdateNodeType(0, getValueType(Operator), *this);
2155  
2156      if (!OpName.empty())
2157        error("ValueType cast should not have a name!");
2158      return New;
2159    }
2160  
2161    // Verify that this is something that makes sense for an operator.
2162    if (!Operator->isSubClassOf("PatFrag") &&
2163        !Operator->isSubClassOf("SDNode") &&
2164        !Operator->isSubClassOf("Instruction") &&
2165        !Operator->isSubClassOf("SDNodeXForm") &&
2166        !Operator->isSubClassOf("Intrinsic") &&
2167        !Operator->isSubClassOf("ComplexPattern") &&
2168        Operator->getName() != "set" &&
2169        Operator->getName() != "implicit")
2170      error("Unrecognized node '" + Operator->getName() + "'!");
2171  
2172    //  Check to see if this is something that is illegal in an input pattern.
2173    if (isInputPattern) {
2174      if (Operator->isSubClassOf("Instruction") ||
2175          Operator->isSubClassOf("SDNodeXForm"))
2176        error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2177    } else {
2178      if (Operator->isSubClassOf("Intrinsic"))
2179        error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2180  
2181      if (Operator->isSubClassOf("SDNode") &&
2182          Operator->getName() != "imm" &&
2183          Operator->getName() != "fpimm" &&
2184          Operator->getName() != "tglobaltlsaddr" &&
2185          Operator->getName() != "tconstpool" &&
2186          Operator->getName() != "tjumptable" &&
2187          Operator->getName() != "tframeindex" &&
2188          Operator->getName() != "texternalsym" &&
2189          Operator->getName() != "tblockaddress" &&
2190          Operator->getName() != "tglobaladdr" &&
2191          Operator->getName() != "bb" &&
2192          Operator->getName() != "vt" &&
2193          Operator->getName() != "mcsym")
2194        error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2195    }
2196  
2197    std::vector<TreePatternNode*> Children;
2198  
2199    // Parse all the operands.
2200    for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2201      Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
2202  
2203    // If the operator is an intrinsic, then this is just syntactic sugar for for
2204    // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2205    // convert the intrinsic name to a number.
2206    if (Operator->isSubClassOf("Intrinsic")) {
2207      const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2208      unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2209  
2210      // If this intrinsic returns void, it must have side-effects and thus a
2211      // chain.
2212      if (Int.IS.RetVTs.empty())
2213        Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2214      else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2215        // Has side-effects, requires chain.
2216        Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2217      else // Otherwise, no chain.
2218        Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2219  
2220      TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2221      Children.insert(Children.begin(), IIDNode);
2222    }
2223  
2224    if (Operator->isSubClassOf("ComplexPattern")) {
2225      for (unsigned i = 0; i < Children.size(); ++i) {
2226        TreePatternNode *Child = Children[i];
2227  
2228        if (Child->getName().empty())
2229          error("All arguments to a ComplexPattern must be named");
2230  
2231        // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2232        // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2233        // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2234        auto OperandId = std::make_pair(Operator, i);
2235        auto PrevOp = ComplexPatternOperands.find(Child->getName());
2236        if (PrevOp != ComplexPatternOperands.end()) {
2237          if (PrevOp->getValue() != OperandId)
2238            error("All ComplexPattern operands must appear consistently: "
2239                  "in the same order in just one ComplexPattern instance.");
2240        } else
2241          ComplexPatternOperands[Child->getName()] = OperandId;
2242      }
2243    }
2244  
2245    unsigned NumResults = GetNumNodeResults(Operator, CDP);
2246    TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2247    Result->setName(OpName);
2248  
2249    if (!Dag->getName().empty()) {
2250      assert(Result->getName().empty());
2251      Result->setName(Dag->getName());
2252    }
2253    return Result;
2254  }
2255  
2256  /// SimplifyTree - See if we can simplify this tree to eliminate something that
2257  /// will never match in favor of something obvious that will.  This is here
2258  /// strictly as a convenience to target authors because it allows them to write
2259  /// more type generic things and have useless type casts fold away.
2260  ///
2261  /// This returns true if any change is made.
SimplifyTree(TreePatternNode * & N)2262  static bool SimplifyTree(TreePatternNode *&N) {
2263    if (N->isLeaf())
2264      return false;
2265  
2266    // If we have a bitconvert with a resolved type and if the source and
2267    // destination types are the same, then the bitconvert is useless, remove it.
2268    if (N->getOperator()->getName() == "bitconvert" &&
2269        N->getExtType(0).isConcrete() &&
2270        N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2271        N->getName().empty()) {
2272      N = N->getChild(0);
2273      SimplifyTree(N);
2274      return true;
2275    }
2276  
2277    // Walk all children.
2278    bool MadeChange = false;
2279    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2280      TreePatternNode *Child = N->getChild(i);
2281      MadeChange |= SimplifyTree(Child);
2282      N->setChild(i, Child);
2283    }
2284    return MadeChange;
2285  }
2286  
2287  
2288  
2289  /// InferAllTypes - Infer/propagate as many types throughout the expression
2290  /// patterns as possible.  Return true if all types are inferred, false
2291  /// otherwise.  Flags an error if a type contradiction is found.
2292  bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2293  InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2294    if (NamedNodes.empty())
2295      ComputeNamedNodes();
2296  
2297    bool MadeChange = true;
2298    while (MadeChange) {
2299      MadeChange = false;
2300      for (TreePatternNode *Tree : Trees) {
2301        MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2302        MadeChange |= SimplifyTree(Tree);
2303      }
2304  
2305      // If there are constraints on our named nodes, apply them.
2306      for (auto &Entry : NamedNodes) {
2307        SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2308  
2309        // If we have input named node types, propagate their types to the named
2310        // values here.
2311        if (InNamedTypes) {
2312          if (!InNamedTypes->count(Entry.getKey())) {
2313            error("Node '" + std::string(Entry.getKey()) +
2314                  "' in output pattern but not input pattern");
2315            return true;
2316          }
2317  
2318          const SmallVectorImpl<TreePatternNode*> &InNodes =
2319            InNamedTypes->find(Entry.getKey())->second;
2320  
2321          // The input types should be fully resolved by now.
2322          for (TreePatternNode *Node : Nodes) {
2323            // If this node is a register class, and it is the root of the pattern
2324            // then we're mapping something onto an input register.  We allow
2325            // changing the type of the input register in this case.  This allows
2326            // us to match things like:
2327            //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2328            if (Node == Trees[0] && Node->isLeaf()) {
2329              DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2330              if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2331                         DI->getDef()->isSubClassOf("RegisterOperand")))
2332                continue;
2333            }
2334  
2335            assert(Node->getNumTypes() == 1 &&
2336                   InNodes[0]->getNumTypes() == 1 &&
2337                   "FIXME: cannot name multiple result nodes yet");
2338            MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2339                                               *this);
2340          }
2341        }
2342  
2343        // If there are multiple nodes with the same name, they must all have the
2344        // same type.
2345        if (Entry.second.size() > 1) {
2346          for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2347            TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2348            assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2349                   "FIXME: cannot name multiple result nodes yet");
2350  
2351            MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2352            MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2353          }
2354        }
2355      }
2356    }
2357  
2358    bool HasUnresolvedTypes = false;
2359    for (const TreePatternNode *Tree : Trees)
2360      HasUnresolvedTypes |= Tree->ContainsUnresolvedType();
2361    return !HasUnresolvedTypes;
2362  }
2363  
print(raw_ostream & OS) const2364  void TreePattern::print(raw_ostream &OS) const {
2365    OS << getRecord()->getName();
2366    if (!Args.empty()) {
2367      OS << "(" << Args[0];
2368      for (unsigned i = 1, e = Args.size(); i != e; ++i)
2369        OS << ", " << Args[i];
2370      OS << ")";
2371    }
2372    OS << ": ";
2373  
2374    if (Trees.size() > 1)
2375      OS << "[\n";
2376    for (const TreePatternNode *Tree : Trees) {
2377      OS << "\t";
2378      Tree->print(OS);
2379      OS << "\n";
2380    }
2381  
2382    if (Trees.size() > 1)
2383      OS << "]\n";
2384  }
2385  
dump() const2386  void TreePattern::dump() const { print(errs()); }
2387  
2388  //===----------------------------------------------------------------------===//
2389  // CodeGenDAGPatterns implementation
2390  //
2391  
CodeGenDAGPatterns(RecordKeeper & R)2392  CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2393    Records(R), Target(R) {
2394  
2395    Intrinsics = LoadIntrinsics(Records, false);
2396    TgtIntrinsics = LoadIntrinsics(Records, true);
2397    ParseNodeInfo();
2398    ParseNodeTransforms();
2399    ParseComplexPatterns();
2400    ParsePatternFragments();
2401    ParseDefaultOperands();
2402    ParseInstructions();
2403    ParsePatternFragments(/*OutFrags*/true);
2404    ParsePatterns();
2405  
2406    // Generate variants.  For example, commutative patterns can match
2407    // multiple ways.  Add them to PatternsToMatch as well.
2408    GenerateVariants();
2409  
2410    // Infer instruction flags.  For example, we can detect loads,
2411    // stores, and side effects in many cases by examining an
2412    // instruction's pattern.
2413    InferInstructionFlags();
2414  
2415    // Verify that instruction flags match the patterns.
2416    VerifyInstructionFlags();
2417  }
2418  
getSDNodeNamed(const std::string & Name) const2419  Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2420    Record *N = Records.getDef(Name);
2421    if (!N || !N->isSubClassOf("SDNode"))
2422      PrintFatalError("Error getting SDNode '" + Name + "'!");
2423  
2424    return N;
2425  }
2426  
2427  // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2428  void CodeGenDAGPatterns::ParseNodeInfo() {
2429    std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2430    while (!Nodes.empty()) {
2431      SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2432      Nodes.pop_back();
2433    }
2434  
2435    // Get the builtin intrinsic nodes.
2436    intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2437    intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2438    intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2439  }
2440  
2441  /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2442  /// map, and emit them to the file as functions.
ParseNodeTransforms()2443  void CodeGenDAGPatterns::ParseNodeTransforms() {
2444    std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2445    while (!Xforms.empty()) {
2446      Record *XFormNode = Xforms.back();
2447      Record *SDNode = XFormNode->getValueAsDef("Opcode");
2448      std::string Code = XFormNode->getValueAsString("XFormFunction");
2449      SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2450  
2451      Xforms.pop_back();
2452    }
2453  }
2454  
ParseComplexPatterns()2455  void CodeGenDAGPatterns::ParseComplexPatterns() {
2456    std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2457    while (!AMs.empty()) {
2458      ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2459      AMs.pop_back();
2460    }
2461  }
2462  
2463  
2464  /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2465  /// file, building up the PatternFragments map.  After we've collected them all,
2466  /// inline fragments together as necessary, so that there are no references left
2467  /// inside a pattern fragment to a pattern fragment.
2468  ///
ParsePatternFragments(bool OutFrags)2469  void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2470    std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2471  
2472    // First step, parse all of the fragments.
2473    for (Record *Frag : Fragments) {
2474      if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2475        continue;
2476  
2477      DagInit *Tree = Frag->getValueAsDag("Fragment");
2478      TreePattern *P =
2479          (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2480               Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2481               *this)).get();
2482  
2483      // Validate the argument list, converting it to set, to discard duplicates.
2484      std::vector<std::string> &Args = P->getArgList();
2485      std::set<std::string> OperandsSet(Args.begin(), Args.end());
2486  
2487      if (OperandsSet.count(""))
2488        P->error("Cannot have unnamed 'node' values in pattern fragment!");
2489  
2490      // Parse the operands list.
2491      DagInit *OpsList = Frag->getValueAsDag("Operands");
2492      DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2493      // Special cases: ops == outs == ins. Different names are used to
2494      // improve readability.
2495      if (!OpsOp ||
2496          (OpsOp->getDef()->getName() != "ops" &&
2497           OpsOp->getDef()->getName() != "outs" &&
2498           OpsOp->getDef()->getName() != "ins"))
2499        P->error("Operands list should start with '(ops ... '!");
2500  
2501      // Copy over the arguments.
2502      Args.clear();
2503      for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2504        if (!isa<DefInit>(OpsList->getArg(j)) ||
2505            cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2506          P->error("Operands list should all be 'node' values.");
2507        if (OpsList->getArgName(j).empty())
2508          P->error("Operands list should have names for each operand!");
2509        if (!OperandsSet.count(OpsList->getArgName(j)))
2510          P->error("'" + OpsList->getArgName(j) +
2511                   "' does not occur in pattern or was multiply specified!");
2512        OperandsSet.erase(OpsList->getArgName(j));
2513        Args.push_back(OpsList->getArgName(j));
2514      }
2515  
2516      if (!OperandsSet.empty())
2517        P->error("Operands list does not contain an entry for operand '" +
2518                 *OperandsSet.begin() + "'!");
2519  
2520      // If there is a code init for this fragment, keep track of the fact that
2521      // this fragment uses it.
2522      TreePredicateFn PredFn(P);
2523      if (!PredFn.isAlwaysTrue())
2524        P->getOnlyTree()->addPredicateFn(PredFn);
2525  
2526      // If there is a node transformation corresponding to this, keep track of
2527      // it.
2528      Record *Transform = Frag->getValueAsDef("OperandTransform");
2529      if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2530        P->getOnlyTree()->setTransformFn(Transform);
2531    }
2532  
2533    // Now that we've parsed all of the tree fragments, do a closure on them so
2534    // that there are not references to PatFrags left inside of them.
2535    for (Record *Frag : Fragments) {
2536      if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2537        continue;
2538  
2539      TreePattern &ThePat = *PatternFragments[Frag];
2540      ThePat.InlinePatternFragments();
2541  
2542      // Infer as many types as possible.  Don't worry about it if we don't infer
2543      // all of them, some may depend on the inputs of the pattern.
2544      ThePat.InferAllTypes();
2545      ThePat.resetError();
2546  
2547      // If debugging, print out the pattern fragment result.
2548      DEBUG(ThePat.dump());
2549    }
2550  }
2551  
ParseDefaultOperands()2552  void CodeGenDAGPatterns::ParseDefaultOperands() {
2553    std::vector<Record*> DefaultOps;
2554    DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2555  
2556    // Find some SDNode.
2557    assert(!SDNodes.empty() && "No SDNodes parsed?");
2558    Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2559  
2560    for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2561      DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2562  
2563      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2564      // SomeSDnode so that we can parse this.
2565      std::vector<std::pair<Init*, std::string> > Ops;
2566      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2567        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2568                                     DefaultInfo->getArgName(op)));
2569      DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2570  
2571      // Create a TreePattern to parse this.
2572      TreePattern P(DefaultOps[i], DI, false, *this);
2573      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2574  
2575      // Copy the operands over into a DAGDefaultOperand.
2576      DAGDefaultOperand DefaultOpInfo;
2577  
2578      TreePatternNode *T = P.getTree(0);
2579      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2580        TreePatternNode *TPN = T->getChild(op);
2581        while (TPN->ApplyTypeConstraints(P, false))
2582          /* Resolve all types */;
2583  
2584        if (TPN->ContainsUnresolvedType()) {
2585          PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
2586                          DefaultOps[i]->getName() +
2587                          "' doesn't have a concrete type!");
2588        }
2589        DefaultOpInfo.DefaultOps.push_back(TPN);
2590      }
2591  
2592      // Insert it into the DefaultOperands map so we can find it later.
2593      DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2594    }
2595  }
2596  
2597  /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2598  /// instruction input.  Return true if this is a real use.
HandleUse(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs)2599  static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2600                        std::map<std::string, TreePatternNode*> &InstInputs) {
2601    // No name -> not interesting.
2602    if (Pat->getName().empty()) {
2603      if (Pat->isLeaf()) {
2604        DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2605        if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2606                   DI->getDef()->isSubClassOf("RegisterOperand")))
2607          I->error("Input " + DI->getDef()->getName() + " must be named!");
2608      }
2609      return false;
2610    }
2611  
2612    Record *Rec;
2613    if (Pat->isLeaf()) {
2614      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2615      if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2616      Rec = DI->getDef();
2617    } else {
2618      Rec = Pat->getOperator();
2619    }
2620  
2621    // SRCVALUE nodes are ignored.
2622    if (Rec->getName() == "srcvalue")
2623      return false;
2624  
2625    TreePatternNode *&Slot = InstInputs[Pat->getName()];
2626    if (!Slot) {
2627      Slot = Pat;
2628      return true;
2629    }
2630    Record *SlotRec;
2631    if (Slot->isLeaf()) {
2632      SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2633    } else {
2634      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2635      SlotRec = Slot->getOperator();
2636    }
2637  
2638    // Ensure that the inputs agree if we've already seen this input.
2639    if (Rec != SlotRec)
2640      I->error("All $" + Pat->getName() + " inputs must agree with each other");
2641    if (Slot->getExtTypes() != Pat->getExtTypes())
2642      I->error("All $" + Pat->getName() + " inputs must agree with each other");
2643    return true;
2644  }
2645  
2646  /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2647  /// part of "I", the instruction), computing the set of inputs and outputs of
2648  /// the pattern.  Report errors if we see anything naughty.
2649  void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs,std::map<std::string,TreePatternNode * > & InstResults,std::vector<Record * > & InstImpResults)2650  FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2651                              std::map<std::string, TreePatternNode*> &InstInputs,
2652                              std::map<std::string, TreePatternNode*>&InstResults,
2653                              std::vector<Record*> &InstImpResults) {
2654    if (Pat->isLeaf()) {
2655      bool isUse = HandleUse(I, Pat, InstInputs);
2656      if (!isUse && Pat->getTransformFn())
2657        I->error("Cannot specify a transform function for a non-input value!");
2658      return;
2659    }
2660  
2661    if (Pat->getOperator()->getName() == "implicit") {
2662      for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2663        TreePatternNode *Dest = Pat->getChild(i);
2664        if (!Dest->isLeaf())
2665          I->error("implicitly defined value should be a register!");
2666  
2667        DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2668        if (!Val || !Val->getDef()->isSubClassOf("Register"))
2669          I->error("implicitly defined value should be a register!");
2670        InstImpResults.push_back(Val->getDef());
2671      }
2672      return;
2673    }
2674  
2675    if (Pat->getOperator()->getName() != "set") {
2676      // If this is not a set, verify that the children nodes are not void typed,
2677      // and recurse.
2678      for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2679        if (Pat->getChild(i)->getNumTypes() == 0)
2680          I->error("Cannot have void nodes inside of patterns!");
2681        FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2682                                    InstImpResults);
2683      }
2684  
2685      // If this is a non-leaf node with no children, treat it basically as if
2686      // it were a leaf.  This handles nodes like (imm).
2687      bool isUse = HandleUse(I, Pat, InstInputs);
2688  
2689      if (!isUse && Pat->getTransformFn())
2690        I->error("Cannot specify a transform function for a non-input value!");
2691      return;
2692    }
2693  
2694    // Otherwise, this is a set, validate and collect instruction results.
2695    if (Pat->getNumChildren() == 0)
2696      I->error("set requires operands!");
2697  
2698    if (Pat->getTransformFn())
2699      I->error("Cannot specify a transform function on a set node!");
2700  
2701    // Check the set destinations.
2702    unsigned NumDests = Pat->getNumChildren()-1;
2703    for (unsigned i = 0; i != NumDests; ++i) {
2704      TreePatternNode *Dest = Pat->getChild(i);
2705      if (!Dest->isLeaf())
2706        I->error("set destination should be a register!");
2707  
2708      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2709      if (!Val) {
2710        I->error("set destination should be a register!");
2711        continue;
2712      }
2713  
2714      if (Val->getDef()->isSubClassOf("RegisterClass") ||
2715          Val->getDef()->isSubClassOf("ValueType") ||
2716          Val->getDef()->isSubClassOf("RegisterOperand") ||
2717          Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2718        if (Dest->getName().empty())
2719          I->error("set destination must have a name!");
2720        if (InstResults.count(Dest->getName()))
2721          I->error("cannot set '" + Dest->getName() +"' multiple times");
2722        InstResults[Dest->getName()] = Dest;
2723      } else if (Val->getDef()->isSubClassOf("Register")) {
2724        InstImpResults.push_back(Val->getDef());
2725      } else {
2726        I->error("set destination should be a register!");
2727      }
2728    }
2729  
2730    // Verify and collect info from the computation.
2731    FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2732                                InstInputs, InstResults, InstImpResults);
2733  }
2734  
2735  //===----------------------------------------------------------------------===//
2736  // Instruction Analysis
2737  //===----------------------------------------------------------------------===//
2738  
2739  class InstAnalyzer {
2740    const CodeGenDAGPatterns &CDP;
2741  public:
2742    bool hasSideEffects;
2743    bool mayStore;
2744    bool mayLoad;
2745    bool isBitcast;
2746    bool isVariadic;
2747  
InstAnalyzer(const CodeGenDAGPatterns & cdp)2748    InstAnalyzer(const CodeGenDAGPatterns &cdp)
2749      : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2750        isBitcast(false), isVariadic(false) {}
2751  
Analyze(const TreePattern * Pat)2752    void Analyze(const TreePattern *Pat) {
2753      // Assume only the first tree is the pattern. The others are clobber nodes.
2754      AnalyzeNode(Pat->getTree(0));
2755    }
2756  
Analyze(const PatternToMatch * Pat)2757    void Analyze(const PatternToMatch *Pat) {
2758      AnalyzeNode(Pat->getSrcPattern());
2759    }
2760  
2761  private:
IsNodeBitcast(const TreePatternNode * N) const2762    bool IsNodeBitcast(const TreePatternNode *N) const {
2763      if (hasSideEffects || mayLoad || mayStore || isVariadic)
2764        return false;
2765  
2766      if (N->getNumChildren() != 2)
2767        return false;
2768  
2769      const TreePatternNode *N0 = N->getChild(0);
2770      if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2771        return false;
2772  
2773      const TreePatternNode *N1 = N->getChild(1);
2774      if (N1->isLeaf())
2775        return false;
2776      if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2777        return false;
2778  
2779      const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2780      if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2781        return false;
2782      return OpInfo.getEnumName() == "ISD::BITCAST";
2783    }
2784  
2785  public:
AnalyzeNode(const TreePatternNode * N)2786    void AnalyzeNode(const TreePatternNode *N) {
2787      if (N->isLeaf()) {
2788        if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2789          Record *LeafRec = DI->getDef();
2790          // Handle ComplexPattern leaves.
2791          if (LeafRec->isSubClassOf("ComplexPattern")) {
2792            const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2793            if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2794            if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2795            if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2796          }
2797        }
2798        return;
2799      }
2800  
2801      // Analyze children.
2802      for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2803        AnalyzeNode(N->getChild(i));
2804  
2805      // Ignore set nodes, which are not SDNodes.
2806      if (N->getOperator()->getName() == "set") {
2807        isBitcast = IsNodeBitcast(N);
2808        return;
2809      }
2810  
2811      // Notice properties of the node.
2812      if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
2813      if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
2814      if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
2815      if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
2816  
2817      if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2818        // If this is an intrinsic, analyze it.
2819        if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
2820          mayLoad = true;// These may load memory.
2821  
2822        if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
2823          mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2824  
2825        if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2826          // ReadWriteMem intrinsics can have other strange effects.
2827          hasSideEffects = true;
2828      }
2829    }
2830  
2831  };
2832  
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)2833  static bool InferFromPattern(CodeGenInstruction &InstInfo,
2834                               const InstAnalyzer &PatInfo,
2835                               Record *PatDef) {
2836    bool Error = false;
2837  
2838    // Remember where InstInfo got its flags.
2839    if (InstInfo.hasUndefFlags())
2840        InstInfo.InferredFrom = PatDef;
2841  
2842    // Check explicitly set flags for consistency.
2843    if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2844        !InstInfo.hasSideEffects_Unset) {
2845      // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2846      // the pattern has no side effects. That could be useful for div/rem
2847      // instructions that may trap.
2848      if (!InstInfo.hasSideEffects) {
2849        Error = true;
2850        PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2851                   Twine(InstInfo.hasSideEffects));
2852      }
2853    }
2854  
2855    if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2856      Error = true;
2857      PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2858                 Twine(InstInfo.mayStore));
2859    }
2860  
2861    if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2862      // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2863      // Some targets translate immediates to loads.
2864      if (!InstInfo.mayLoad) {
2865        Error = true;
2866        PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2867                   Twine(InstInfo.mayLoad));
2868      }
2869    }
2870  
2871    // Transfer inferred flags.
2872    InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2873    InstInfo.mayStore |= PatInfo.mayStore;
2874    InstInfo.mayLoad |= PatInfo.mayLoad;
2875  
2876    // These flags are silently added without any verification.
2877    InstInfo.isBitcast |= PatInfo.isBitcast;
2878  
2879    // Don't infer isVariadic. This flag means something different on SDNodes and
2880    // instructions. For example, a CALL SDNode is variadic because it has the
2881    // call arguments as operands, but a CALL instruction is not variadic - it
2882    // has argument registers as implicit, not explicit uses.
2883  
2884    return Error;
2885  }
2886  
2887  /// hasNullFragReference - Return true if the DAG has any reference to the
2888  /// null_frag operator.
hasNullFragReference(DagInit * DI)2889  static bool hasNullFragReference(DagInit *DI) {
2890    DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2891    if (!OpDef) return false;
2892    Record *Operator = OpDef->getDef();
2893  
2894    // If this is the null fragment, return true.
2895    if (Operator->getName() == "null_frag") return true;
2896    // If any of the arguments reference the null fragment, return true.
2897    for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2898      DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2899      if (Arg && hasNullFragReference(Arg))
2900        return true;
2901    }
2902  
2903    return false;
2904  }
2905  
2906  /// hasNullFragReference - Return true if any DAG in the list references
2907  /// the null_frag operator.
hasNullFragReference(ListInit * LI)2908  static bool hasNullFragReference(ListInit *LI) {
2909    for (Init *I : LI->getValues()) {
2910      DagInit *DI = dyn_cast<DagInit>(I);
2911      assert(DI && "non-dag in an instruction Pattern list?!");
2912      if (hasNullFragReference(DI))
2913        return true;
2914    }
2915    return false;
2916  }
2917  
2918  /// Get all the instructions in a tree.
2919  static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)2920  getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2921    if (Tree->isLeaf())
2922      return;
2923    if (Tree->getOperator()->isSubClassOf("Instruction"))
2924      Instrs.push_back(Tree->getOperator());
2925    for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2926      getInstructionsInTree(Tree->getChild(i), Instrs);
2927  }
2928  
2929  /// Check the class of a pattern leaf node against the instruction operand it
2930  /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)2931  static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2932                                Record *Leaf) {
2933    if (OI.Rec == Leaf)
2934      return true;
2935  
2936    // Allow direct value types to be used in instruction set patterns.
2937    // The type will be checked later.
2938    if (Leaf->isSubClassOf("ValueType"))
2939      return true;
2940  
2941    // Patterns can also be ComplexPattern instances.
2942    if (Leaf->isSubClassOf("ComplexPattern"))
2943      return true;
2944  
2945    return false;
2946  }
2947  
parseInstructionPattern(CodeGenInstruction & CGI,ListInit * Pat,DAGInstMap & DAGInsts)2948  const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
2949      CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
2950  
2951    assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
2952  
2953    // Parse the instruction.
2954    TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
2955    // Inline pattern fragments into it.
2956    I->InlinePatternFragments();
2957  
2958    // Infer as many types as possible.  If we cannot infer all of them, we can
2959    // never do anything with this instruction pattern: report it to the user.
2960    if (!I->InferAllTypes())
2961      I->error("Could not infer all types in pattern!");
2962  
2963    // InstInputs - Keep track of all of the inputs of the instruction, along
2964    // with the record they are declared as.
2965    std::map<std::string, TreePatternNode*> InstInputs;
2966  
2967    // InstResults - Keep track of all the virtual registers that are 'set'
2968    // in the instruction, including what reg class they are.
2969    std::map<std::string, TreePatternNode*> InstResults;
2970  
2971    std::vector<Record*> InstImpResults;
2972  
2973    // Verify that the top-level forms in the instruction are of void type, and
2974    // fill in the InstResults map.
2975    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2976      TreePatternNode *Pat = I->getTree(j);
2977      if (Pat->getNumTypes() != 0) {
2978        std::string Types;
2979        for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
2980          if (k > 0)
2981            Types += ", ";
2982          Types += Pat->getExtType(k).getName();
2983        }
2984        I->error("Top-level forms in instruction pattern should have"
2985                 " void types, has types " + Types);
2986      }
2987  
2988      // Find inputs and outputs, and verify the structure of the uses/defs.
2989      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2990                                  InstImpResults);
2991    }
2992  
2993    // Now that we have inputs and outputs of the pattern, inspect the operands
2994    // list for the instruction.  This determines the order that operands are
2995    // added to the machine instruction the node corresponds to.
2996    unsigned NumResults = InstResults.size();
2997  
2998    // Parse the operands list from the (ops) list, validating it.
2999    assert(I->getArgList().empty() && "Args list should still be empty here!");
3000  
3001    // Check that all of the results occur first in the list.
3002    std::vector<Record*> Results;
3003    SmallVector<TreePatternNode *, 2> ResNodes;
3004    for (unsigned i = 0; i != NumResults; ++i) {
3005      if (i == CGI.Operands.size())
3006        I->error("'" + InstResults.begin()->first +
3007                 "' set but does not appear in operand list!");
3008      const std::string &OpName = CGI.Operands[i].Name;
3009  
3010      // Check that it exists in InstResults.
3011      TreePatternNode *RNode = InstResults[OpName];
3012      if (!RNode)
3013        I->error("Operand $" + OpName + " does not exist in operand list!");
3014  
3015      ResNodes.push_back(RNode);
3016  
3017      Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3018      if (!R)
3019        I->error("Operand $" + OpName + " should be a set destination: all "
3020                 "outputs must occur before inputs in operand list!");
3021  
3022      if (!checkOperandClass(CGI.Operands[i], R))
3023        I->error("Operand $" + OpName + " class mismatch!");
3024  
3025      // Remember the return type.
3026      Results.push_back(CGI.Operands[i].Rec);
3027  
3028      // Okay, this one checks out.
3029      InstResults.erase(OpName);
3030    }
3031  
3032    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3033    // the copy while we're checking the inputs.
3034    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3035  
3036    std::vector<TreePatternNode*> ResultNodeOperands;
3037    std::vector<Record*> Operands;
3038    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3039      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3040      const std::string &OpName = Op.Name;
3041      if (OpName.empty())
3042        I->error("Operand #" + utostr(i) + " in operands list has no name!");
3043  
3044      if (!InstInputsCheck.count(OpName)) {
3045        // If this is an operand with a DefaultOps set filled in, we can ignore
3046        // this.  When we codegen it, we will do so as always executed.
3047        if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3048          // Does it have a non-empty DefaultOps field?  If so, ignore this
3049          // operand.
3050          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3051            continue;
3052        }
3053        I->error("Operand $" + OpName +
3054                 " does not appear in the instruction pattern");
3055      }
3056      TreePatternNode *InVal = InstInputsCheck[OpName];
3057      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3058  
3059      if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3060        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3061        if (!checkOperandClass(Op, InRec))
3062          I->error("Operand $" + OpName + "'s register class disagrees"
3063                   " between the operand and pattern");
3064      }
3065      Operands.push_back(Op.Rec);
3066  
3067      // Construct the result for the dest-pattern operand list.
3068      TreePatternNode *OpNode = InVal->clone();
3069  
3070      // No predicate is useful on the result.
3071      OpNode->clearPredicateFns();
3072  
3073      // Promote the xform function to be an explicit node if set.
3074      if (Record *Xform = OpNode->getTransformFn()) {
3075        OpNode->setTransformFn(nullptr);
3076        std::vector<TreePatternNode*> Children;
3077        Children.push_back(OpNode);
3078        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3079      }
3080  
3081      ResultNodeOperands.push_back(OpNode);
3082    }
3083  
3084    if (!InstInputsCheck.empty())
3085      I->error("Input operand $" + InstInputsCheck.begin()->first +
3086               " occurs in pattern but not in operands list!");
3087  
3088    TreePatternNode *ResultPattern =
3089      new TreePatternNode(I->getRecord(), ResultNodeOperands,
3090                          GetNumNodeResults(I->getRecord(), *this));
3091    // Copy fully inferred output node types to instruction result pattern.
3092    for (unsigned i = 0; i != NumResults; ++i) {
3093      assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3094      ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3095    }
3096  
3097    // Create and insert the instruction.
3098    // FIXME: InstImpResults should not be part of DAGInstruction.
3099    DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3100    DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3101  
3102    // Use a temporary tree pattern to infer all types and make sure that the
3103    // constructed result is correct.  This depends on the instruction already
3104    // being inserted into the DAGInsts map.
3105    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3106    Temp.InferAllTypes(&I->getNamedNodesMap());
3107  
3108    DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3109    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3110  
3111    return TheInsertedInst;
3112  }
3113  
3114  /// ParseInstructions - Parse all of the instructions, inlining and resolving
3115  /// any fragments involved.  This populates the Instructions list with fully
3116  /// resolved instructions.
ParseInstructions()3117  void CodeGenDAGPatterns::ParseInstructions() {
3118    std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3119  
3120    for (Record *Instr : Instrs) {
3121      ListInit *LI = nullptr;
3122  
3123      if (isa<ListInit>(Instr->getValueInit("Pattern")))
3124        LI = Instr->getValueAsListInit("Pattern");
3125  
3126      // If there is no pattern, only collect minimal information about the
3127      // instruction for its operand list.  We have to assume that there is one
3128      // result, as we have no detailed info. A pattern which references the
3129      // null_frag operator is as-if no pattern were specified. Normally this
3130      // is from a multiclass expansion w/ a SDPatternOperator passed in as
3131      // null_frag.
3132      if (!LI || LI->empty() || hasNullFragReference(LI)) {
3133        std::vector<Record*> Results;
3134        std::vector<Record*> Operands;
3135  
3136        CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3137  
3138        if (InstInfo.Operands.size() != 0) {
3139          for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3140            Results.push_back(InstInfo.Operands[j].Rec);
3141  
3142          // The rest are inputs.
3143          for (unsigned j = InstInfo.Operands.NumDefs,
3144                 e = InstInfo.Operands.size(); j < e; ++j)
3145            Operands.push_back(InstInfo.Operands[j].Rec);
3146        }
3147  
3148        // Create and insert the instruction.
3149        std::vector<Record*> ImpResults;
3150        Instructions.insert(std::make_pair(Instr,
3151                            DAGInstruction(nullptr, Results, Operands, ImpResults)));
3152        continue;  // no pattern.
3153      }
3154  
3155      CodeGenInstruction &CGI = Target.getInstruction(Instr);
3156      const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3157  
3158      (void)DI;
3159      DEBUG(DI.getPattern()->dump());
3160    }
3161  
3162    // If we can, convert the instructions to be patterns that are matched!
3163    for (auto &Entry : Instructions) {
3164      DAGInstruction &TheInst = Entry.second;
3165      TreePattern *I = TheInst.getPattern();
3166      if (!I) continue;  // No pattern.
3167  
3168      // FIXME: Assume only the first tree is the pattern. The others are clobber
3169      // nodes.
3170      TreePatternNode *Pattern = I->getTree(0);
3171      TreePatternNode *SrcPattern;
3172      if (Pattern->getOperator()->getName() == "set") {
3173        SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3174      } else{
3175        // Not a set (store or something?)
3176        SrcPattern = Pattern;
3177      }
3178  
3179      Record *Instr = Entry.first;
3180      AddPatternToMatch(I,
3181                        PatternToMatch(Instr,
3182                                       Instr->getValueAsListInit("Predicates"),
3183                                       SrcPattern,
3184                                       TheInst.getResultPattern(),
3185                                       TheInst.getImpResults(),
3186                                       Instr->getValueAsInt("AddedComplexity"),
3187                                       Instr->getID()));
3188    }
3189  }
3190  
3191  
3192  typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3193  
FindNames(const TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)3194  static void FindNames(const TreePatternNode *P,
3195                        std::map<std::string, NameRecord> &Names,
3196                        TreePattern *PatternTop) {
3197    if (!P->getName().empty()) {
3198      NameRecord &Rec = Names[P->getName()];
3199      // If this is the first instance of the name, remember the node.
3200      if (Rec.second++ == 0)
3201        Rec.first = P;
3202      else if (Rec.first->getExtTypes() != P->getExtTypes())
3203        PatternTop->error("repetition of value: $" + P->getName() +
3204                          " where different uses have different types!");
3205    }
3206  
3207    if (!P->isLeaf()) {
3208      for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3209        FindNames(P->getChild(i), Names, PatternTop);
3210    }
3211  }
3212  
AddPatternToMatch(TreePattern * Pattern,const PatternToMatch & PTM)3213  void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3214                                             const PatternToMatch &PTM) {
3215    // Do some sanity checking on the pattern we're about to match.
3216    std::string Reason;
3217    if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3218      PrintWarning(Pattern->getRecord()->getLoc(),
3219        Twine("Pattern can never match: ") + Reason);
3220      return;
3221    }
3222  
3223    // If the source pattern's root is a complex pattern, that complex pattern
3224    // must specify the nodes it can potentially match.
3225    if (const ComplexPattern *CP =
3226          PTM.getSrcPattern()->getComplexPatternInfo(*this))
3227      if (CP->getRootNodes().empty())
3228        Pattern->error("ComplexPattern at root must specify list of opcodes it"
3229                       " could match");
3230  
3231  
3232    // Find all of the named values in the input and output, ensure they have the
3233    // same type.
3234    std::map<std::string, NameRecord> SrcNames, DstNames;
3235    FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3236    FindNames(PTM.getDstPattern(), DstNames, Pattern);
3237  
3238    // Scan all of the named values in the destination pattern, rejecting them if
3239    // they don't exist in the input pattern.
3240    for (const auto &Entry : DstNames) {
3241      if (SrcNames[Entry.first].first == nullptr)
3242        Pattern->error("Pattern has input without matching name in output: $" +
3243                       Entry.first);
3244    }
3245  
3246    // Scan all of the named values in the source pattern, rejecting them if the
3247    // name isn't used in the dest, and isn't used to tie two values together.
3248    for (const auto &Entry : SrcNames)
3249      if (DstNames[Entry.first].first == nullptr &&
3250          SrcNames[Entry.first].second == 1)
3251        Pattern->error("Pattern has dead named input: $" + Entry.first);
3252  
3253    PatternsToMatch.push_back(PTM);
3254  }
3255  
3256  
3257  
InferInstructionFlags()3258  void CodeGenDAGPatterns::InferInstructionFlags() {
3259    ArrayRef<const CodeGenInstruction*> Instructions =
3260      Target.getInstructionsByEnumValue();
3261  
3262    // First try to infer flags from the primary instruction pattern, if any.
3263    SmallVector<CodeGenInstruction*, 8> Revisit;
3264    unsigned Errors = 0;
3265    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3266      CodeGenInstruction &InstInfo =
3267        const_cast<CodeGenInstruction &>(*Instructions[i]);
3268  
3269      // Get the primary instruction pattern.
3270      const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3271      if (!Pattern) {
3272        if (InstInfo.hasUndefFlags())
3273          Revisit.push_back(&InstInfo);
3274        continue;
3275      }
3276      InstAnalyzer PatInfo(*this);
3277      PatInfo.Analyze(Pattern);
3278      Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3279    }
3280  
3281    // Second, look for single-instruction patterns defined outside the
3282    // instruction.
3283    for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3284      const PatternToMatch &PTM = *I;
3285  
3286      // We can only infer from single-instruction patterns, otherwise we won't
3287      // know which instruction should get the flags.
3288      SmallVector<Record*, 8> PatInstrs;
3289      getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3290      if (PatInstrs.size() != 1)
3291        continue;
3292  
3293      // Get the single instruction.
3294      CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3295  
3296      // Only infer properties from the first pattern. We'll verify the others.
3297      if (InstInfo.InferredFrom)
3298        continue;
3299  
3300      InstAnalyzer PatInfo(*this);
3301      PatInfo.Analyze(&PTM);
3302      Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3303    }
3304  
3305    if (Errors)
3306      PrintFatalError("pattern conflicts");
3307  
3308    // Revisit instructions with undefined flags and no pattern.
3309    if (Target.guessInstructionProperties()) {
3310      for (CodeGenInstruction *InstInfo : Revisit) {
3311        if (InstInfo->InferredFrom)
3312          continue;
3313        // The mayLoad and mayStore flags default to false.
3314        // Conservatively assume hasSideEffects if it wasn't explicit.
3315        if (InstInfo->hasSideEffects_Unset)
3316          InstInfo->hasSideEffects = true;
3317      }
3318      return;
3319    }
3320  
3321    // Complain about any flags that are still undefined.
3322    for (CodeGenInstruction *InstInfo : Revisit) {
3323      if (InstInfo->InferredFrom)
3324        continue;
3325      if (InstInfo->hasSideEffects_Unset)
3326        PrintError(InstInfo->TheDef->getLoc(),
3327                   "Can't infer hasSideEffects from patterns");
3328      if (InstInfo->mayStore_Unset)
3329        PrintError(InstInfo->TheDef->getLoc(),
3330                   "Can't infer mayStore from patterns");
3331      if (InstInfo->mayLoad_Unset)
3332        PrintError(InstInfo->TheDef->getLoc(),
3333                   "Can't infer mayLoad from patterns");
3334    }
3335  }
3336  
3337  
3338  /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()3339  void CodeGenDAGPatterns::VerifyInstructionFlags() {
3340    unsigned Errors = 0;
3341    for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3342      const PatternToMatch &PTM = *I;
3343      SmallVector<Record*, 8> Instrs;
3344      getInstructionsInTree(PTM.getDstPattern(), Instrs);
3345      if (Instrs.empty())
3346        continue;
3347  
3348      // Count the number of instructions with each flag set.
3349      unsigned NumSideEffects = 0;
3350      unsigned NumStores = 0;
3351      unsigned NumLoads = 0;
3352      for (const Record *Instr : Instrs) {
3353        const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3354        NumSideEffects += InstInfo.hasSideEffects;
3355        NumStores += InstInfo.mayStore;
3356        NumLoads += InstInfo.mayLoad;
3357      }
3358  
3359      // Analyze the source pattern.
3360      InstAnalyzer PatInfo(*this);
3361      PatInfo.Analyze(&PTM);
3362  
3363      // Collect error messages.
3364      SmallVector<std::string, 4> Msgs;
3365  
3366      // Check for missing flags in the output.
3367      // Permit extra flags for now at least.
3368      if (PatInfo.hasSideEffects && !NumSideEffects)
3369        Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3370  
3371      // Don't verify store flags on instructions with side effects. At least for
3372      // intrinsics, side effects implies mayStore.
3373      if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3374        Msgs.push_back("pattern may store, but mayStore isn't set");
3375  
3376      // Similarly, mayStore implies mayLoad on intrinsics.
3377      if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3378        Msgs.push_back("pattern may load, but mayLoad isn't set");
3379  
3380      // Print error messages.
3381      if (Msgs.empty())
3382        continue;
3383      ++Errors;
3384  
3385      for (const std::string &Msg : Msgs)
3386        PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3387                   (Instrs.size() == 1 ?
3388                    "instruction" : "output instructions"));
3389      // Provide the location of the relevant instruction definitions.
3390      for (const Record *Instr : Instrs) {
3391        if (Instr != PTM.getSrcRecord())
3392          PrintError(Instr->getLoc(), "defined here");
3393        const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3394        if (InstInfo.InferredFrom &&
3395            InstInfo.InferredFrom != InstInfo.TheDef &&
3396            InstInfo.InferredFrom != PTM.getSrcRecord())
3397          PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3398      }
3399    }
3400    if (Errors)
3401      PrintFatalError("Errors in DAG patterns");
3402  }
3403  
3404  /// Given a pattern result with an unresolved type, see if we can find one
3405  /// instruction with an unresolved result type.  Force this result type to an
3406  /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3407  static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3408    if (N->isLeaf())
3409      return false;
3410  
3411    // Analyze children.
3412    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3413      if (ForceArbitraryInstResultType(N->getChild(i), TP))
3414        return true;
3415  
3416    if (!N->getOperator()->isSubClassOf("Instruction"))
3417      return false;
3418  
3419    // If this type is already concrete or completely unknown we can't do
3420    // anything.
3421    for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3422      if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3423        continue;
3424  
3425      // Otherwise, force its type to the first possibility (an arbitrary choice).
3426      if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3427        return true;
3428    }
3429  
3430    return false;
3431  }
3432  
ParsePatterns()3433  void CodeGenDAGPatterns::ParsePatterns() {
3434    std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3435  
3436    for (Record *CurPattern : Patterns) {
3437      DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3438  
3439      // If the pattern references the null_frag, there's nothing to do.
3440      if (hasNullFragReference(Tree))
3441        continue;
3442  
3443      TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3444  
3445      // Inline pattern fragments into it.
3446      Pattern->InlinePatternFragments();
3447  
3448      ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3449      if (LI->empty()) continue;  // no pattern.
3450  
3451      // Parse the instruction.
3452      TreePattern Result(CurPattern, LI, false, *this);
3453  
3454      // Inline pattern fragments into it.
3455      Result.InlinePatternFragments();
3456  
3457      if (Result.getNumTrees() != 1)
3458        Result.error("Cannot handle instructions producing instructions "
3459                     "with temporaries yet!");
3460  
3461      bool IterateInference;
3462      bool InferredAllPatternTypes, InferredAllResultTypes;
3463      do {
3464        // Infer as many types as possible.  If we cannot infer all of them, we
3465        // can never do anything with this pattern: report it to the user.
3466        InferredAllPatternTypes =
3467          Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3468  
3469        // Infer as many types as possible.  If we cannot infer all of them, we
3470        // can never do anything with this pattern: report it to the user.
3471        InferredAllResultTypes =
3472            Result.InferAllTypes(&Pattern->getNamedNodesMap());
3473  
3474        IterateInference = false;
3475  
3476        // Apply the type of the result to the source pattern.  This helps us
3477        // resolve cases where the input type is known to be a pointer type (which
3478        // is considered resolved), but the result knows it needs to be 32- or
3479        // 64-bits.  Infer the other way for good measure.
3480        for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3481                                          Pattern->getTree(0)->getNumTypes());
3482             i != e; ++i) {
3483          IterateInference = Pattern->getTree(0)->UpdateNodeType(
3484              i, Result.getTree(0)->getExtType(i), Result);
3485          IterateInference |= Result.getTree(0)->UpdateNodeType(
3486              i, Pattern->getTree(0)->getExtType(i), Result);
3487        }
3488  
3489        // If our iteration has converged and the input pattern's types are fully
3490        // resolved but the result pattern is not fully resolved, we may have a
3491        // situation where we have two instructions in the result pattern and
3492        // the instructions require a common register class, but don't care about
3493        // what actual MVT is used.  This is actually a bug in our modelling:
3494        // output patterns should have register classes, not MVTs.
3495        //
3496        // In any case, to handle this, we just go through and disambiguate some
3497        // arbitrary types to the result pattern's nodes.
3498        if (!IterateInference && InferredAllPatternTypes &&
3499            !InferredAllResultTypes)
3500          IterateInference =
3501              ForceArbitraryInstResultType(Result.getTree(0), Result);
3502      } while (IterateInference);
3503  
3504      // Verify that we inferred enough types that we can do something with the
3505      // pattern and result.  If these fire the user has to add type casts.
3506      if (!InferredAllPatternTypes)
3507        Pattern->error("Could not infer all types in pattern!");
3508      if (!InferredAllResultTypes) {
3509        Pattern->dump();
3510        Result.error("Could not infer all types in pattern result!");
3511      }
3512  
3513      // Validate that the input pattern is correct.
3514      std::map<std::string, TreePatternNode*> InstInputs;
3515      std::map<std::string, TreePatternNode*> InstResults;
3516      std::vector<Record*> InstImpResults;
3517      for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3518        FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3519                                    InstInputs, InstResults,
3520                                    InstImpResults);
3521  
3522      // Promote the xform function to be an explicit node if set.
3523      TreePatternNode *DstPattern = Result.getOnlyTree();
3524      std::vector<TreePatternNode*> ResultNodeOperands;
3525      for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3526        TreePatternNode *OpNode = DstPattern->getChild(ii);
3527        if (Record *Xform = OpNode->getTransformFn()) {
3528          OpNode->setTransformFn(nullptr);
3529          std::vector<TreePatternNode*> Children;
3530          Children.push_back(OpNode);
3531          OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3532        }
3533        ResultNodeOperands.push_back(OpNode);
3534      }
3535      DstPattern = Result.getOnlyTree();
3536      if (!DstPattern->isLeaf())
3537        DstPattern = new TreePatternNode(DstPattern->getOperator(),
3538                                         ResultNodeOperands,
3539                                         DstPattern->getNumTypes());
3540  
3541      for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3542        DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3543  
3544      TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
3545      Temp.InferAllTypes();
3546  
3547  
3548      AddPatternToMatch(Pattern,
3549                      PatternToMatch(CurPattern,
3550                                     CurPattern->getValueAsListInit("Predicates"),
3551                                     Pattern->getTree(0),
3552                                     Temp.getOnlyTree(), InstImpResults,
3553                                     CurPattern->getValueAsInt("AddedComplexity"),
3554                                     CurPattern->getID()));
3555    }
3556  }
3557  
3558  /// CombineChildVariants - Given a bunch of permutations of each child of the
3559  /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNode * Orig,const std::vector<std::vector<TreePatternNode * >> & ChildVariants,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3560  static void CombineChildVariants(TreePatternNode *Orig,
3561                 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3562                                   std::vector<TreePatternNode*> &OutVariants,
3563                                   CodeGenDAGPatterns &CDP,
3564                                   const MultipleUseVarSet &DepVars) {
3565    // Make sure that each operand has at least one variant to choose from.
3566    for (const auto &Variants : ChildVariants)
3567      if (Variants.empty())
3568        return;
3569  
3570    // The end result is an all-pairs construction of the resultant pattern.
3571    std::vector<unsigned> Idxs;
3572    Idxs.resize(ChildVariants.size());
3573    bool NotDone;
3574    do {
3575  #ifndef NDEBUG
3576      DEBUG(if (!Idxs.empty()) {
3577              errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3578                for (unsigned Idx : Idxs) {
3579                  errs() << Idx << " ";
3580              }
3581              errs() << "]\n";
3582            });
3583  #endif
3584      // Create the variant and add it to the output list.
3585      std::vector<TreePatternNode*> NewChildren;
3586      for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3587        NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3588      auto R = llvm::make_unique<TreePatternNode>(
3589          Orig->getOperator(), NewChildren, Orig->getNumTypes());
3590  
3591      // Copy over properties.
3592      R->setName(Orig->getName());
3593      R->setPredicateFns(Orig->getPredicateFns());
3594      R->setTransformFn(Orig->getTransformFn());
3595      for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3596        R->setType(i, Orig->getExtType(i));
3597  
3598      // If this pattern cannot match, do not include it as a variant.
3599      std::string ErrString;
3600      // Scan to see if this pattern has already been emitted.  We can get
3601      // duplication due to things like commuting:
3602      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3603      // which are the same pattern.  Ignore the dups.
3604      if (R->canPatternMatch(ErrString, CDP) &&
3605          std::none_of(OutVariants.begin(), OutVariants.end(),
3606                       [&](TreePatternNode *Variant) {
3607                         return R->isIsomorphicTo(Variant, DepVars);
3608                       }))
3609        OutVariants.push_back(R.release());
3610  
3611      // Increment indices to the next permutation by incrementing the
3612      // indices from last index backward, e.g., generate the sequence
3613      // [0, 0], [0, 1], [1, 0], [1, 1].
3614      int IdxsIdx;
3615      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3616        if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3617          Idxs[IdxsIdx] = 0;
3618        else
3619          break;
3620      }
3621      NotDone = (IdxsIdx >= 0);
3622    } while (NotDone);
3623  }
3624  
3625  /// CombineChildVariants - A helper function for binary operators.
3626  ///
CombineChildVariants(TreePatternNode * Orig,const std::vector<TreePatternNode * > & LHS,const std::vector<TreePatternNode * > & RHS,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3627  static void CombineChildVariants(TreePatternNode *Orig,
3628                                   const std::vector<TreePatternNode*> &LHS,
3629                                   const std::vector<TreePatternNode*> &RHS,
3630                                   std::vector<TreePatternNode*> &OutVariants,
3631                                   CodeGenDAGPatterns &CDP,
3632                                   const MultipleUseVarSet &DepVars) {
3633    std::vector<std::vector<TreePatternNode*> > ChildVariants;
3634    ChildVariants.push_back(LHS);
3635    ChildVariants.push_back(RHS);
3636    CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3637  }
3638  
3639  
GatherChildrenOfAssociativeOpcode(TreePatternNode * N,std::vector<TreePatternNode * > & Children)3640  static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3641                                       std::vector<TreePatternNode *> &Children) {
3642    assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3643    Record *Operator = N->getOperator();
3644  
3645    // Only permit raw nodes.
3646    if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3647        N->getTransformFn()) {
3648      Children.push_back(N);
3649      return;
3650    }
3651  
3652    if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3653      Children.push_back(N->getChild(0));
3654    else
3655      GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3656  
3657    if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3658      Children.push_back(N->getChild(1));
3659    else
3660      GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3661  }
3662  
3663  /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3664  /// the (potentially recursive) pattern by using algebraic laws.
3665  ///
GenerateVariantsOf(TreePatternNode * N,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3666  static void GenerateVariantsOf(TreePatternNode *N,
3667                                 std::vector<TreePatternNode*> &OutVariants,
3668                                 CodeGenDAGPatterns &CDP,
3669                                 const MultipleUseVarSet &DepVars) {
3670    // We cannot permute leaves or ComplexPattern uses.
3671    if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
3672      OutVariants.push_back(N);
3673      return;
3674    }
3675  
3676    // Look up interesting info about the node.
3677    const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3678  
3679    // If this node is associative, re-associate.
3680    if (NodeInfo.hasProperty(SDNPAssociative)) {
3681      // Re-associate by pulling together all of the linked operators
3682      std::vector<TreePatternNode*> MaximalChildren;
3683      GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3684  
3685      // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3686      // permutations.
3687      if (MaximalChildren.size() == 3) {
3688        // Find the variants of all of our maximal children.
3689        std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3690        GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3691        GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3692        GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3693  
3694        // There are only two ways we can permute the tree:
3695        //   (A op B) op C    and    A op (B op C)
3696        // Within these forms, we can also permute A/B/C.
3697  
3698        // Generate legal pair permutations of A/B/C.
3699        std::vector<TreePatternNode*> ABVariants;
3700        std::vector<TreePatternNode*> BAVariants;
3701        std::vector<TreePatternNode*> ACVariants;
3702        std::vector<TreePatternNode*> CAVariants;
3703        std::vector<TreePatternNode*> BCVariants;
3704        std::vector<TreePatternNode*> CBVariants;
3705        CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3706        CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3707        CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3708        CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3709        CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3710        CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3711  
3712        // Combine those into the result: (x op x) op x
3713        CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3714        CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3715        CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3716        CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3717        CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3718        CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3719  
3720        // Combine those into the result: x op (x op x)
3721        CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3722        CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3723        CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3724        CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3725        CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3726        CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3727        return;
3728      }
3729    }
3730  
3731    // Compute permutations of all children.
3732    std::vector<std::vector<TreePatternNode*> > ChildVariants;
3733    ChildVariants.resize(N->getNumChildren());
3734    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3735      GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3736  
3737    // Build all permutations based on how the children were formed.
3738    CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3739  
3740    // If this node is commutative, consider the commuted order.
3741    bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3742    if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3743      assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3744             "Commutative but doesn't have 2 children!");
3745      // Don't count children which are actually register references.
3746      unsigned NC = 0;
3747      for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3748        TreePatternNode *Child = N->getChild(i);
3749        if (Child->isLeaf())
3750          if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3751            Record *RR = DI->getDef();
3752            if (RR->isSubClassOf("Register"))
3753              continue;
3754          }
3755        NC++;
3756      }
3757      // Consider the commuted order.
3758      if (isCommIntrinsic) {
3759        // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3760        // operands are the commutative operands, and there might be more operands
3761        // after those.
3762        assert(NC >= 3 &&
3763               "Commutative intrinsic should have at least 3 children!");
3764        std::vector<std::vector<TreePatternNode*> > Variants;
3765        Variants.push_back(ChildVariants[0]); // Intrinsic id.
3766        Variants.push_back(ChildVariants[2]);
3767        Variants.push_back(ChildVariants[1]);
3768        for (unsigned i = 3; i != NC; ++i)
3769          Variants.push_back(ChildVariants[i]);
3770        CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3771      } else if (NC == 2)
3772        CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3773                             OutVariants, CDP, DepVars);
3774    }
3775  }
3776  
3777  
3778  // GenerateVariants - Generate variants.  For example, commutative patterns can
3779  // match multiple ways.  Add them to PatternsToMatch as well.
GenerateVariants()3780  void CodeGenDAGPatterns::GenerateVariants() {
3781    DEBUG(errs() << "Generating instruction variants.\n");
3782  
3783    // Loop over all of the patterns we've collected, checking to see if we can
3784    // generate variants of the instruction, through the exploitation of
3785    // identities.  This permits the target to provide aggressive matching without
3786    // the .td file having to contain tons of variants of instructions.
3787    //
3788    // Note that this loop adds new patterns to the PatternsToMatch list, but we
3789    // intentionally do not reconsider these.  Any variants of added patterns have
3790    // already been added.
3791    //
3792    for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3793      MultipleUseVarSet             DepVars;
3794      std::vector<TreePatternNode*> Variants;
3795      FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3796      DEBUG(errs() << "Dependent/multiply used variables: ");
3797      DEBUG(DumpDepVars(DepVars));
3798      DEBUG(errs() << "\n");
3799      GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3800                         DepVars);
3801  
3802      assert(!Variants.empty() && "Must create at least original variant!");
3803      Variants.erase(Variants.begin());  // Remove the original pattern.
3804  
3805      if (Variants.empty())  // No variants for this pattern.
3806        continue;
3807  
3808      DEBUG(errs() << "FOUND VARIANTS OF: ";
3809            PatternsToMatch[i].getSrcPattern()->dump();
3810            errs() << "\n");
3811  
3812      for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3813        TreePatternNode *Variant = Variants[v];
3814  
3815        DEBUG(errs() << "  VAR#" << v <<  ": ";
3816              Variant->dump();
3817              errs() << "\n");
3818  
3819        // Scan to see if an instruction or explicit pattern already matches this.
3820        bool AlreadyExists = false;
3821        for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3822          // Skip if the top level predicates do not match.
3823          if (PatternsToMatch[i].getPredicates() !=
3824              PatternsToMatch[p].getPredicates())
3825            continue;
3826          // Check to see if this variant already exists.
3827          if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3828                                      DepVars)) {
3829            DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3830            AlreadyExists = true;
3831            break;
3832          }
3833        }
3834        // If we already have it, ignore the variant.
3835        if (AlreadyExists) continue;
3836  
3837        // Otherwise, add it to the list of patterns we have.
3838        PatternsToMatch.emplace_back(
3839            PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
3840            Variant, PatternsToMatch[i].getDstPattern(),
3841            PatternsToMatch[i].getDstRegs(),
3842            PatternsToMatch[i].getAddedComplexity(), Record::getNewUID());
3843      }
3844  
3845      DEBUG(errs() << "\n");
3846    }
3847  }
3848