1 /* 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include "modules/audio_coding/neteq/tools/neteq_delay_analyzer.h" 12 13 #include <algorithm> 14 #include <fstream> 15 #include <ios> 16 #include <iterator> 17 #include <limits> 18 #include <utility> 19 20 #include "absl/strings/string_view.h" 21 #include "modules/include/module_common_types_public.h" 22 #include "rtc_base/checks.h" 23 24 namespace webrtc { 25 namespace test { 26 namespace { 27 constexpr char kArrivalDelayX[] = "arrival_delay_x"; 28 constexpr char kArrivalDelayY[] = "arrival_delay_y"; 29 constexpr char kTargetDelayX[] = "target_delay_x"; 30 constexpr char kTargetDelayY[] = "target_delay_y"; 31 constexpr char kPlayoutDelayX[] = "playout_delay_x"; 32 constexpr char kPlayoutDelayY[] = "playout_delay_y"; 33 34 // Helper function for NetEqDelayAnalyzer::CreateGraphs. Returns the 35 // interpolated value of a function at the point x. Vector x_vec contains the 36 // sample points, and y_vec contains the function values at these points. The 37 // return value is a linear interpolation between y_vec values. LinearInterpolate(double x,const std::vector<int64_t> & x_vec,const std::vector<int64_t> & y_vec)38 double LinearInterpolate(double x, 39 const std::vector<int64_t>& x_vec, 40 const std::vector<int64_t>& y_vec) { 41 // Find first element which is larger than x. 42 auto it = std::upper_bound(x_vec.begin(), x_vec.end(), x); 43 if (it == x_vec.end()) { 44 --it; 45 } 46 const size_t upper_ix = it - x_vec.begin(); 47 48 size_t lower_ix; 49 if (upper_ix == 0 || x_vec[upper_ix] <= x) { 50 lower_ix = upper_ix; 51 } else { 52 lower_ix = upper_ix - 1; 53 } 54 double y; 55 if (lower_ix == upper_ix) { 56 y = y_vec[lower_ix]; 57 } else { 58 RTC_DCHECK_NE(x_vec[lower_ix], x_vec[upper_ix]); 59 y = (x - x_vec[lower_ix]) * (y_vec[upper_ix] - y_vec[lower_ix]) / 60 (x_vec[upper_ix] - x_vec[lower_ix]) + 61 y_vec[lower_ix]; 62 } 63 return y; 64 } 65 PrintDelays(const NetEqDelayAnalyzer::Delays & delays,int64_t ref_time_ms,absl::string_view var_name_x,absl::string_view var_name_y,std::ofstream & output,absl::string_view terminator="")66 void PrintDelays(const NetEqDelayAnalyzer::Delays& delays, 67 int64_t ref_time_ms, 68 absl::string_view var_name_x, 69 absl::string_view var_name_y, 70 std::ofstream& output, 71 absl::string_view terminator = "") { 72 output << var_name_x << " = [ "; 73 for (const std::pair<int64_t, float>& delay : delays) { 74 output << (delay.first - ref_time_ms) / 1000.f << ", "; 75 } 76 output << "]" << terminator << std::endl; 77 78 output << var_name_y << " = [ "; 79 for (const std::pair<int64_t, float>& delay : delays) { 80 output << delay.second << ", "; 81 } 82 output << "]" << terminator << std::endl; 83 } 84 85 } // namespace 86 AfterInsertPacket(const test::NetEqInput::PacketData & packet,NetEq * neteq)87 void NetEqDelayAnalyzer::AfterInsertPacket( 88 const test::NetEqInput::PacketData& packet, 89 NetEq* neteq) { 90 data_.insert( 91 std::make_pair(packet.header.timestamp, TimingData(packet.time_ms))); 92 ssrcs_.insert(packet.header.ssrc); 93 payload_types_.insert(packet.header.payloadType); 94 } 95 BeforeGetAudio(NetEq * neteq)96 void NetEqDelayAnalyzer::BeforeGetAudio(NetEq* neteq) { 97 last_sync_buffer_ms_ = neteq->SyncBufferSizeMs(); 98 } 99 AfterGetAudio(int64_t time_now_ms,const AudioFrame & audio_frame,bool,NetEq * neteq)100 void NetEqDelayAnalyzer::AfterGetAudio(int64_t time_now_ms, 101 const AudioFrame& audio_frame, 102 bool /*muted*/, 103 NetEq* neteq) { 104 get_audio_time_ms_.push_back(time_now_ms); 105 for (const RtpPacketInfo& info : audio_frame.packet_infos_) { 106 auto it = data_.find(info.rtp_timestamp()); 107 if (it == data_.end()) { 108 // This is a packet that was split out from another packet. Skip it. 109 continue; 110 } 111 auto& it_timing = it->second; 112 RTC_CHECK(!it_timing.decode_get_audio_count) 113 << "Decode time already written"; 114 it_timing.decode_get_audio_count = get_audio_count_; 115 RTC_CHECK(!it_timing.sync_delay_ms) << "Decode time already written"; 116 it_timing.sync_delay_ms = last_sync_buffer_ms_; 117 it_timing.target_delay_ms = neteq->TargetDelayMs(); 118 it_timing.current_delay_ms = neteq->FilteredCurrentDelayMs(); 119 } 120 last_sample_rate_hz_ = audio_frame.sample_rate_hz_; 121 ++get_audio_count_; 122 } 123 CreateGraphs(Delays * arrival_delay_ms,Delays * corrected_arrival_delay_ms,Delays * playout_delay_ms,Delays * target_delay_ms) const124 void NetEqDelayAnalyzer::CreateGraphs(Delays* arrival_delay_ms, 125 Delays* corrected_arrival_delay_ms, 126 Delays* playout_delay_ms, 127 Delays* target_delay_ms) const { 128 if (get_audio_time_ms_.empty()) { 129 return; 130 } 131 // Create nominal_get_audio_time_ms, a vector starting at 132 // get_audio_time_ms_[0] and increasing by 10 for each element. 133 std::vector<int64_t> nominal_get_audio_time_ms(get_audio_time_ms_.size()); 134 nominal_get_audio_time_ms[0] = get_audio_time_ms_[0]; 135 std::transform( 136 nominal_get_audio_time_ms.begin(), nominal_get_audio_time_ms.end() - 1, 137 nominal_get_audio_time_ms.begin() + 1, [](int64_t& x) { return x + 10; }); 138 RTC_DCHECK( 139 std::is_sorted(get_audio_time_ms_.begin(), get_audio_time_ms_.end())); 140 141 std::vector<double> rtp_timestamps_ms; 142 double offset = std::numeric_limits<double>::max(); 143 TimestampUnwrapper unwrapper; 144 // This loop traverses data_ and populates rtp_timestamps_ms as well as 145 // calculates the base offset. 146 for (auto& d : data_) { 147 rtp_timestamps_ms.push_back( 148 static_cast<double>(unwrapper.Unwrap(d.first)) / 149 rtc::CheckedDivExact(last_sample_rate_hz_, 1000)); 150 offset = 151 std::min(offset, d.second.arrival_time_ms - rtp_timestamps_ms.back()); 152 } 153 154 // This loop traverses the data again and populates the graph vectors. The 155 // reason to have two loops and traverse twice is that the offset cannot be 156 // known until the first traversal is done. Meanwhile, the final offset must 157 // be known already at the start of this second loop. 158 size_t i = 0; 159 for (const auto& data : data_) { 160 const double offset_send_time_ms = rtp_timestamps_ms[i++] + offset; 161 const auto& timing = data.second; 162 corrected_arrival_delay_ms->push_back(std::make_pair( 163 timing.arrival_time_ms, 164 LinearInterpolate(timing.arrival_time_ms, get_audio_time_ms_, 165 nominal_get_audio_time_ms) - 166 offset_send_time_ms)); 167 arrival_delay_ms->push_back(std::make_pair( 168 timing.arrival_time_ms, timing.arrival_time_ms - offset_send_time_ms)); 169 170 if (timing.decode_get_audio_count) { 171 // This packet was decoded. 172 RTC_DCHECK(timing.sync_delay_ms); 173 const int64_t get_audio_time = 174 *timing.decode_get_audio_count * 10 + get_audio_time_ms_[0]; 175 const float playout_ms = 176 get_audio_time + *timing.sync_delay_ms - offset_send_time_ms; 177 playout_delay_ms->push_back(std::make_pair(get_audio_time, playout_ms)); 178 RTC_DCHECK(timing.target_delay_ms); 179 RTC_DCHECK(timing.current_delay_ms); 180 const float target = 181 playout_ms - *timing.current_delay_ms + *timing.target_delay_ms; 182 target_delay_ms->push_back(std::make_pair(get_audio_time, target)); 183 } 184 } 185 } 186 CreateMatlabScript(absl::string_view script_name) const187 void NetEqDelayAnalyzer::CreateMatlabScript( 188 absl::string_view script_name) const { 189 Delays arrival_delay_ms; 190 Delays corrected_arrival_delay_ms; 191 Delays playout_delay_ms; 192 Delays target_delay_ms; 193 CreateGraphs(&arrival_delay_ms, &corrected_arrival_delay_ms, 194 &playout_delay_ms, &target_delay_ms); 195 196 // Maybe better to find the actually smallest timestamp, to surely avoid 197 // x-axis starting from negative. 198 const int64_t ref_time_ms = arrival_delay_ms.front().first; 199 200 // Create an output file stream to Matlab script file. 201 std::ofstream output(std::string{script_name}); 202 203 PrintDelays(corrected_arrival_delay_ms, ref_time_ms, kArrivalDelayX, 204 kArrivalDelayY, output, ";"); 205 206 // PrintDelays(corrected_arrival_delay_x, kCorrectedArrivalDelayX, 207 // kCorrectedArrivalDelayY, output); 208 209 PrintDelays(playout_delay_ms, ref_time_ms, kPlayoutDelayX, kPlayoutDelayY, 210 output, ";"); 211 212 PrintDelays(target_delay_ms, ref_time_ms, kTargetDelayX, kTargetDelayY, 213 output, ";"); 214 215 output << "h=plot(" << kArrivalDelayX << ", " << kArrivalDelayY << ", " 216 << kTargetDelayX << ", " << kTargetDelayY << ", 'g.', " 217 << kPlayoutDelayX << ", " << kPlayoutDelayY << ");" << std::endl; 218 output << "set(h(1),'color',0.75*[1 1 1]);" << std::endl; 219 output << "set(h(2),'markersize',6);" << std::endl; 220 output << "set(h(3),'linew',1.5);" << std::endl; 221 output << "ax1=axis;" << std::endl; 222 output << "axis tight" << std::endl; 223 output << "ax2=axis;" << std::endl; 224 output << "axis([ax2(1:3) ax1(4)])" << std::endl; 225 output << "xlabel('time [s]');" << std::endl; 226 output << "ylabel('relative delay [ms]');" << std::endl; 227 if (!ssrcs_.empty()) { 228 auto ssrc_it = ssrcs_.cbegin(); 229 output << "title('SSRC: 0x" << std::hex << static_cast<int64_t>(*ssrc_it++); 230 while (ssrc_it != ssrcs_.end()) { 231 output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++); 232 } 233 output << std::dec; 234 auto pt_it = payload_types_.cbegin(); 235 output << "; Payload Types: " << *pt_it++; 236 while (pt_it != payload_types_.end()) { 237 output << ", " << *pt_it++; 238 } 239 output << "');" << std::endl; 240 } 241 } 242 CreatePythonScript(absl::string_view script_name) const243 void NetEqDelayAnalyzer::CreatePythonScript( 244 absl::string_view script_name) const { 245 Delays arrival_delay_ms; 246 Delays corrected_arrival_delay_ms; 247 Delays playout_delay_ms; 248 Delays target_delay_ms; 249 CreateGraphs(&arrival_delay_ms, &corrected_arrival_delay_ms, 250 &playout_delay_ms, &target_delay_ms); 251 252 // Maybe better to find the actually smallest timestamp, to surely avoid 253 // x-axis starting from negative. 254 const int64_t ref_time_ms = arrival_delay_ms.front().first; 255 256 // Create an output file stream to the python script file. 257 std::ofstream output(std::string{script_name}); 258 259 // Necessary includes 260 output << "import numpy as np" << std::endl; 261 output << "import matplotlib.pyplot as plt" << std::endl; 262 263 PrintDelays(corrected_arrival_delay_ms, ref_time_ms, kArrivalDelayX, 264 kArrivalDelayY, output); 265 266 // PrintDelays(corrected_arrival_delay_x, kCorrectedArrivalDelayX, 267 // kCorrectedArrivalDelayY, output); 268 269 PrintDelays(playout_delay_ms, ref_time_ms, kPlayoutDelayX, kPlayoutDelayY, 270 output); 271 272 PrintDelays(target_delay_ms, ref_time_ms, kTargetDelayX, kTargetDelayY, 273 output); 274 275 output << "if __name__ == '__main__':" << std::endl; 276 output << " h=plt.plot(" << kArrivalDelayX << ", " << kArrivalDelayY << ", " 277 << kTargetDelayX << ", " << kTargetDelayY << ", 'g.', " 278 << kPlayoutDelayX << ", " << kPlayoutDelayY << ")" << std::endl; 279 output << " plt.setp(h[0],'color',[.75, .75, .75])" << std::endl; 280 output << " plt.setp(h[1],'markersize',6)" << std::endl; 281 output << " plt.setp(h[2],'linewidth',1.5)" << std::endl; 282 output << " plt.axis('tight')" << std::endl; 283 output << " plt.xlabel('time [s]')" << std::endl; 284 output << " plt.ylabel('relative delay [ms]')" << std::endl; 285 if (!ssrcs_.empty()) { 286 auto ssrc_it = ssrcs_.cbegin(); 287 output << " plt.title('SSRC: 0x" << std::hex 288 << static_cast<int64_t>(*ssrc_it++); 289 while (ssrc_it != ssrcs_.end()) { 290 output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++); 291 } 292 output << std::dec; 293 auto pt_it = payload_types_.cbegin(); 294 output << "; Payload Types: " << *pt_it++; 295 while (pt_it != payload_types_.end()) { 296 output << ", " << *pt_it++; 297 } 298 output << "')" << std::endl; 299 } 300 output << " plt.show()" << std::endl; 301 } 302 303 } // namespace test 304 } // namespace webrtc 305