/* * Copyright 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "NnapiInfo" #define CONTINUE_IF_ERR(expr) \ { \ int _errCode = (expr); \ if (_errCode != ANEURALNETWORKS_NO_ERROR) { \ std::cerr << #expr << " failed at " << __FILE__ << ":" << __LINE__ << std::endl; \ continue; \ } \ } #include #include #include "NeuralNetworks.h" #include "NeuralNetworksTypes.h" namespace { std::string featureLevelString(int64_t featureLevel) { switch (featureLevel) { case ANEURALNETWORKS_FEATURE_LEVEL_1: return "Level 1"; case ANEURALNETWORKS_FEATURE_LEVEL_2: return "Level 2"; case ANEURALNETWORKS_FEATURE_LEVEL_3: return "Level 3"; case ANEURALNETWORKS_FEATURE_LEVEL_4: return "Level 4"; case ANEURALNETWORKS_FEATURE_LEVEL_5: return "Level 5"; case ANEURALNETWORKS_FEATURE_LEVEL_6: return "Level 6"; case ANEURALNETWORKS_FEATURE_LEVEL_7: return "Level 7"; case ANEURALNETWORKS_FEATURE_LEVEL_8: return "Level 8"; default: return "Undefined feature level code"; } } std::string deviceTypeString(int32_t type) { switch (type) { case ANEURALNETWORKS_DEVICE_ACCELERATOR: return "Accelerator"; case ANEURALNETWORKS_DEVICE_CPU: return "CPU"; case ANEURALNETWORKS_DEVICE_GPU: return "GPU"; case ANEURALNETWORKS_DEVICE_OTHER: return "Other"; case ANEURALNETWORKS_DEVICE_UNKNOWN: default: return "Unknown"; } } } // namespace int main() { uint32_t numDevices; int returnCode = ANeuralNetworks_getDeviceCount(&numDevices); if (returnCode != ANEURALNETWORKS_NO_ERROR) { std::cerr << "Error obtaining device count" << std::endl; return 1; } std::cout << "Number of devices: " << numDevices << std::endl << std::endl; ANeuralNetworksDevice* device = nullptr; int64_t featureLevel; const char* name; int32_t type; const char* version; for (uint32_t i = 0; i < numDevices; i++) { CONTINUE_IF_ERR(ANeuralNetworks_getDevice(i, &device)); CONTINUE_IF_ERR(ANeuralNetworksDevice_getFeatureLevel(device, &featureLevel)); CONTINUE_IF_ERR(ANeuralNetworksDevice_getName(device, &name)); CONTINUE_IF_ERR(ANeuralNetworksDevice_getType(device, &type)); CONTINUE_IF_ERR(ANeuralNetworksDevice_getVersion(device, &version)); std::cout << "Device: " << name << std::endl; std::cout << "Feature Level: " << featureLevelString(featureLevel) << std::endl; std::cout << "Type: " << deviceTypeString(type) << std::endl; std::cout << "Version: " << version << std::endl; std::cout << std::endl; } return 0; }