use super::NaiveTime; use crate::{FixedOffset, TimeDelta, Timelike}; #[test] fn test_time_from_hms_milli() { assert_eq!( NaiveTime::from_hms_milli_opt(3, 5, 7, 0), Some(NaiveTime::from_hms_nano_opt(3, 5, 7, 0).unwrap()) ); assert_eq!( NaiveTime::from_hms_milli_opt(3, 5, 7, 777), Some(NaiveTime::from_hms_nano_opt(3, 5, 7, 777_000_000).unwrap()) ); assert_eq!( NaiveTime::from_hms_milli_opt(3, 5, 59, 1_999), Some(NaiveTime::from_hms_nano_opt(3, 5, 59, 1_999_000_000).unwrap()) ); assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 59, 2_000), None); assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 59, 5_000), None); // overflow check assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 59, u32::MAX), None); } #[test] fn test_time_from_hms_micro() { assert_eq!( NaiveTime::from_hms_micro_opt(3, 5, 7, 0), Some(NaiveTime::from_hms_nano_opt(3, 5, 7, 0).unwrap()) ); assert_eq!( NaiveTime::from_hms_micro_opt(3, 5, 7, 333), Some(NaiveTime::from_hms_nano_opt(3, 5, 7, 333_000).unwrap()) ); assert_eq!( NaiveTime::from_hms_micro_opt(3, 5, 7, 777_777), Some(NaiveTime::from_hms_nano_opt(3, 5, 7, 777_777_000).unwrap()) ); assert_eq!( NaiveTime::from_hms_micro_opt(3, 5, 59, 1_999_999), Some(NaiveTime::from_hms_nano_opt(3, 5, 59, 1_999_999_000).unwrap()) ); assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 59, 2_000_000), None); assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 59, 5_000_000), None); // overflow check assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 59, u32::MAX), None); } #[test] fn test_time_hms() { assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().hour(), 3); assert_eq!( NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_hour(0), Some(NaiveTime::from_hms_opt(0, 5, 7).unwrap()) ); assert_eq!( NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_hour(23), Some(NaiveTime::from_hms_opt(23, 5, 7).unwrap()) ); assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_hour(24), None); assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_hour(u32::MAX), None); assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().minute(), 5); assert_eq!( NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_minute(0), Some(NaiveTime::from_hms_opt(3, 0, 7).unwrap()) ); assert_eq!( NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_minute(59), Some(NaiveTime::from_hms_opt(3, 59, 7).unwrap()) ); assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_minute(60), None); assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_minute(u32::MAX), None); assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().second(), 7); assert_eq!( NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_second(0), Some(NaiveTime::from_hms_opt(3, 5, 0).unwrap()) ); assert_eq!( NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_second(59), Some(NaiveTime::from_hms_opt(3, 5, 59).unwrap()) ); assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_second(60), None); assert_eq!(NaiveTime::from_hms_opt(3, 5, 7).unwrap().with_second(u32::MAX), None); } #[test] fn test_time_add() { macro_rules! check { ($lhs:expr, $rhs:expr, $sum:expr) => {{ assert_eq!($lhs + $rhs, $sum); //assert_eq!($rhs + $lhs, $sum); }}; } let hmsm = |h, m, s, ms| NaiveTime::from_hms_milli_opt(h, m, s, ms).unwrap(); check!(hmsm(3, 5, 59, 900), TimeDelta::zero(), hmsm(3, 5, 59, 900)); check!(hmsm(3, 5, 59, 900), TimeDelta::milliseconds(100), hmsm(3, 6, 0, 0)); check!(hmsm(3, 5, 59, 1_300), TimeDelta::milliseconds(-1800), hmsm(3, 5, 58, 500)); check!(hmsm(3, 5, 59, 1_300), TimeDelta::milliseconds(-800), hmsm(3, 5, 59, 500)); check!(hmsm(3, 5, 59, 1_300), TimeDelta::milliseconds(-100), hmsm(3, 5, 59, 1_200)); check!(hmsm(3, 5, 59, 1_300), TimeDelta::milliseconds(100), hmsm(3, 5, 59, 1_400)); check!(hmsm(3, 5, 59, 1_300), TimeDelta::milliseconds(800), hmsm(3, 6, 0, 100)); check!(hmsm(3, 5, 59, 1_300), TimeDelta::milliseconds(1800), hmsm(3, 6, 1, 100)); check!(hmsm(3, 5, 59, 900), TimeDelta::seconds(86399), hmsm(3, 5, 58, 900)); // overwrap check!(hmsm(3, 5, 59, 900), TimeDelta::seconds(-86399), hmsm(3, 6, 0, 900)); check!(hmsm(3, 5, 59, 900), TimeDelta::days(12345), hmsm(3, 5, 59, 900)); check!(hmsm(3, 5, 59, 1_300), TimeDelta::days(1), hmsm(3, 5, 59, 300)); check!(hmsm(3, 5, 59, 1_300), TimeDelta::days(-1), hmsm(3, 6, 0, 300)); // regression tests for #37 check!(hmsm(0, 0, 0, 0), TimeDelta::milliseconds(-990), hmsm(23, 59, 59, 10)); check!(hmsm(0, 0, 0, 0), TimeDelta::milliseconds(-9990), hmsm(23, 59, 50, 10)); } #[test] fn test_time_overflowing_add() { let hmsm = |h, m, s, ms| NaiveTime::from_hms_milli_opt(h, m, s, ms).unwrap(); assert_eq!( hmsm(3, 4, 5, 678).overflowing_add_signed(TimeDelta::hours(11)), (hmsm(14, 4, 5, 678), 0) ); assert_eq!( hmsm(3, 4, 5, 678).overflowing_add_signed(TimeDelta::hours(23)), (hmsm(2, 4, 5, 678), 86_400) ); assert_eq!( hmsm(3, 4, 5, 678).overflowing_add_signed(TimeDelta::hours(-7)), (hmsm(20, 4, 5, 678), -86_400) ); // overflowing_add_signed with leap seconds may be counter-intuitive assert_eq!( hmsm(3, 4, 59, 1_678).overflowing_add_signed(TimeDelta::days(1)), (hmsm(3, 4, 59, 678), 86_400) ); assert_eq!( hmsm(3, 4, 59, 1_678).overflowing_add_signed(TimeDelta::days(-1)), (hmsm(3, 5, 0, 678), -86_400) ); } #[test] fn test_time_addassignment() { let hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); let mut time = hms(12, 12, 12); time += TimeDelta::hours(10); assert_eq!(time, hms(22, 12, 12)); time += TimeDelta::hours(10); assert_eq!(time, hms(8, 12, 12)); } #[test] fn test_time_subassignment() { let hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); let mut time = hms(12, 12, 12); time -= TimeDelta::hours(10); assert_eq!(time, hms(2, 12, 12)); time -= TimeDelta::hours(10); assert_eq!(time, hms(16, 12, 12)); } #[test] fn test_time_sub() { macro_rules! check { ($lhs:expr, $rhs:expr, $diff:expr) => {{ // `time1 - time2 = duration` is equivalent to `time2 - time1 = -duration` assert_eq!($lhs.signed_duration_since($rhs), $diff); assert_eq!($rhs.signed_duration_since($lhs), -$diff); }}; } let hmsm = |h, m, s, ms| NaiveTime::from_hms_milli_opt(h, m, s, ms).unwrap(); check!(hmsm(3, 5, 7, 900), hmsm(3, 5, 7, 900), TimeDelta::zero()); check!(hmsm(3, 5, 7, 900), hmsm(3, 5, 7, 600), TimeDelta::milliseconds(300)); check!(hmsm(3, 5, 7, 200), hmsm(2, 4, 6, 200), TimeDelta::seconds(3600 + 60 + 1)); check!( hmsm(3, 5, 7, 200), hmsm(2, 4, 6, 300), TimeDelta::seconds(3600 + 60) + TimeDelta::milliseconds(900) ); // treats the leap second as if it coincides with the prior non-leap second, // as required by `time1 - time2 = duration` and `time2 - time1 = -duration` equivalence. check!(hmsm(3, 6, 0, 200), hmsm(3, 5, 59, 1_800), TimeDelta::milliseconds(400)); //check!(hmsm(3, 5, 7, 1_200), hmsm(3, 5, 6, 1_800), TimeDelta::milliseconds(1400)); //check!(hmsm(3, 5, 7, 1_200), hmsm(3, 5, 6, 800), TimeDelta::milliseconds(1400)); // additional equality: `time1 + duration = time2` is equivalent to // `time2 - time1 = duration` IF AND ONLY IF `time2` represents a non-leap second. assert_eq!(hmsm(3, 5, 6, 800) + TimeDelta::milliseconds(400), hmsm(3, 5, 7, 200)); //assert_eq!(hmsm(3, 5, 6, 1_800) + TimeDelta::milliseconds(400), hmsm(3, 5, 7, 200)); } #[test] fn test_core_duration_ops() { use core::time::Duration; let mut t = NaiveTime::from_hms_opt(11, 34, 23).unwrap(); let same = t + Duration::ZERO; assert_eq!(t, same); t += Duration::new(3600, 0); assert_eq!(t, NaiveTime::from_hms_opt(12, 34, 23).unwrap()); t -= Duration::new(7200, 0); assert_eq!(t, NaiveTime::from_hms_opt(10, 34, 23).unwrap()); } #[test] fn test_time_fmt() { assert_eq!( format!("{}", NaiveTime::from_hms_milli_opt(23, 59, 59, 999).unwrap()), "23:59:59.999" ); assert_eq!( format!("{}", NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap()), "23:59:60" ); assert_eq!( format!("{}", NaiveTime::from_hms_milli_opt(23, 59, 59, 1_001).unwrap()), "23:59:60.001" ); assert_eq!( format!("{}", NaiveTime::from_hms_micro_opt(0, 0, 0, 43210).unwrap()), "00:00:00.043210" ); assert_eq!( format!("{}", NaiveTime::from_hms_nano_opt(0, 0, 0, 6543210).unwrap()), "00:00:00.006543210" ); // the format specifier should have no effect on `NaiveTime` assert_eq!( format!("{:30}", NaiveTime::from_hms_milli_opt(3, 5, 7, 9).unwrap()), "03:05:07.009" ); } #[test] fn test_time_from_str() { // valid cases let valid = [ "0:0:0", "0:0:0.0000000", "0:0:0.0000003", " 4 : 3 : 2.1 ", " 09:08:07 ", " 09:08 ", " 9:8:07 ", "01:02:03", "4:3:2.1", "9:8:7", "09:8:7", "9:08:7", "9:8:07", "09:08:7", "09:8:07", "09:08:7", "9:08:07", "09:08:07", "9:8:07.123", "9:08:7.123", "09:8:7.123", "09:08:7.123", "9:08:07.123", "09:8:07.123", "09:08:07.123", "09:08:07.123", "09:08:07.1234", "09:08:07.12345", "09:08:07.123456", "09:08:07.1234567", "09:08:07.12345678", "09:08:07.123456789", "09:08:07.1234567891", "09:08:07.12345678912", "23:59:60.373929310237", ]; for &s in &valid { eprintln!("test_time_parse_from_str valid {:?}", s); let d = match s.parse::() { Ok(d) => d, Err(e) => panic!("parsing `{}` has failed: {}", s, e), }; let s_ = format!("{:?}", d); // `s` and `s_` may differ, but `s.parse()` and `s_.parse()` must be same let d_ = match s_.parse::() { Ok(d) => d, Err(e) => { panic!("`{}` is parsed into `{:?}`, but reparsing that has failed: {}", s, d, e) } }; assert!( d == d_, "`{}` is parsed into `{:?}`, but reparsed result \ `{:?}` does not match", s, d, d_ ); } // some invalid cases // since `ParseErrorKind` is private, all we can do is to check if there was an error let invalid = [ "", // empty "x", // invalid "15", // missing data "15:8:", // trailing colon "15:8:x", // invalid data "15:8:9x", // invalid data "23:59:61", // invalid second (out of bounds) "23:54:35 GMT", // invalid (timezone non-sensical for NaiveTime) "23:54:35 +0000", // invalid (timezone non-sensical for NaiveTime) "1441497364.649", // valid datetime, not a NaiveTime "+1441497364.649", // valid datetime, not a NaiveTime "+1441497364", // valid datetime, not a NaiveTime "001:02:03", // invalid hour "01:002:03", // invalid minute "01:02:003", // invalid second "12:34:56.x", // invalid fraction "12:34:56. 0", // invalid fraction format "09:08:00000000007", // invalid second / invalid fraction format ]; for &s in &invalid { eprintln!("test_time_parse_from_str invalid {:?}", s); assert!(s.parse::().is_err()); } } #[test] fn test_time_parse_from_str() { let hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); assert_eq!( NaiveTime::parse_from_str("2014-5-7T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), Ok(hms(12, 34, 56)) ); // ignore date and offset assert_eq!(NaiveTime::parse_from_str("PM 12:59", "%P %H:%M"), Ok(hms(12, 59, 0))); assert_eq!(NaiveTime::parse_from_str("12:59 \n\t PM", "%H:%M \n\t %P"), Ok(hms(12, 59, 0))); assert_eq!(NaiveTime::parse_from_str("\t\t12:59\tPM\t", "\t\t%H:%M\t%P\t"), Ok(hms(12, 59, 0))); assert_eq!( NaiveTime::parse_from_str("\t\t1259\t\tPM\t", "\t\t%H%M\t\t%P\t"), Ok(hms(12, 59, 0)) ); assert!(NaiveTime::parse_from_str("12:59 PM", "%H:%M\t%P").is_ok()); assert!(NaiveTime::parse_from_str("\t\t12:59 PM\t", "\t\t%H:%M\t%P\t").is_ok()); assert!(NaiveTime::parse_from_str("12:59 PM", "%H:%M %P").is_ok()); assert!(NaiveTime::parse_from_str("12:3456", "%H:%M:%S").is_err()); } #[test] fn test_overflowing_offset() { let hmsm = |h, m, s, n| NaiveTime::from_hms_milli_opt(h, m, s, n).unwrap(); let positive_offset = FixedOffset::east_opt(4 * 60 * 60).unwrap(); // regular time let t = hmsm(5, 6, 7, 890); assert_eq!(t.overflowing_add_offset(positive_offset), (hmsm(9, 6, 7, 890), 0)); assert_eq!(t.overflowing_sub_offset(positive_offset), (hmsm(1, 6, 7, 890), 0)); // leap second is preserved, and wrap to next day let t = hmsm(23, 59, 59, 1_000); assert_eq!(t.overflowing_add_offset(positive_offset), (hmsm(3, 59, 59, 1_000), 1)); assert_eq!(t.overflowing_sub_offset(positive_offset), (hmsm(19, 59, 59, 1_000), 0)); // wrap to previous day let t = hmsm(1, 2, 3, 456); assert_eq!(t.overflowing_sub_offset(positive_offset), (hmsm(21, 2, 3, 456), -1)); // an odd offset let negative_offset = FixedOffset::west_opt(((2 * 60) + 3) * 60 + 4).unwrap(); let t = hmsm(5, 6, 7, 890); assert_eq!(t.overflowing_add_offset(negative_offset), (hmsm(3, 3, 3, 890), 0)); assert_eq!(t.overflowing_sub_offset(negative_offset), (hmsm(7, 9, 11, 890), 0)); assert_eq!(t.overflowing_add_offset(positive_offset).0, t + positive_offset); assert_eq!(t.overflowing_sub_offset(positive_offset).0, t - positive_offset); } #[test] #[cfg(feature = "rkyv-validation")] fn test_rkyv_validation() { let t_min = NaiveTime::MIN; let bytes = rkyv::to_bytes::<_, 8>(&t_min).unwrap(); assert_eq!(rkyv::from_bytes::(&bytes).unwrap(), t_min); let t_max = NaiveTime::MAX; let bytes = rkyv::to_bytes::<_, 8>(&t_max).unwrap(); assert_eq!(rkyv::from_bytes::(&bytes).unwrap(), t_max); }