# Owner(s): ["module: scatter & gather ops"] import random import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (parametrize, run_tests, TestCase, DeterministicGuard) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, toleranceOverride, tol,) from torch.testing._internal.common_dtype import \ (get_all_dtypes,) # Protects against includes accidentally setting the default dtype assert torch.get_default_dtype() is torch.float32 # Note: test_scatter_gather_ops.py # This test file tests scatter and gather operations, # like torch.scatter and torch.gather. class TestScatterGather(TestCase): # Fills an index tensor with valid indices def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o, unique_indices=True): for i in range(1 if dim == 0 else m): for j in range(1 if dim == 1 else n): for k in range(1 if dim == 2 else o): ii = [i, j, k] ii[dim] = slice(0, idx.size(dim) + 1) if unique_indices: idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row] else: idx[tuple(ii)] = torch.randint(dim_size, (elems_per_row,)) @dtypes(torch.float32, torch.complex64) def test_gather(self, device, dtype): m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20) elems_per_row = random.randint(1, 10) dim = random.randrange(3) src = make_tensor((m, n, o), device=device, dtype=dtype) idx_size = [m, n, o] idx_size[dim] = elems_per_row idx = make_tensor(idx_size, device=device, dtype=torch.long) self._fill_indices(idx, dim, src.size(dim), elems_per_row, m, n, o) actual = torch.gather(src, dim, idx) expected = torch.zeros(idx_size, device=device, dtype=dtype) for i in range(idx_size[0]): for j in range(idx_size[1]): for k in range(idx_size[2]): ii = [i, j, k] ii[dim] = idx[i, j, k] expected[i, j, k] = src[tuple(ii)] self.assertEqual(actual, expected, atol=0, rtol=0) # Guarded because torch.max isn't defined for complex types if not dtype.is_complex: src = make_tensor((3, 4, 5), device=device, dtype=dtype) expected, idx = src.max(2, True) actual = torch.gather(src, 2, idx) self.assertEqual(actual, expected, atol=0, rtol=0) @dtypes(torch.bool) def test_gather_bool(self, device, dtype): src = torch.tensor(((False, True), (True, True)), device=device, dtype=dtype) idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long) actual = torch.gather(src, 1, idx) expected = torch.tensor(((False, False), (True, True)), device=device, dtype=dtype) self.assertEqual(actual, expected, atol=0, rtol=0) @parametrize("sparse_grad", [False, True]) @dtypes(torch.float32, torch.float64) def test_gather_backward_with_empty_index_tensor(self, device, dtype, sparse_grad): dim = -1 input = torch.rand([10, 5], dtype=dtype, device=device, requires_grad=True) index = torch.randint(0, 2, [3, 0], dtype=torch.int64, device=device) res = torch.gather(input, dim, index, sparse_grad=sparse_grad) res.sum().backward() grad = input.grad.to_dense() if sparse_grad else input.grad expected_grad = torch.zeros_like(input, requires_grad=False) self.assertEqual(grad, expected_grad, atol=0, rtol=0) def _test_scatter_base(self, fn, *, device, dtype, is_scalar, reduction, unique_indices=True, include_self=True): m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20) elems_per_row = random.randint(1, 10) dim = random.randrange(3) idx_size = [m, n, o] idx_size[dim] = elems_per_row idx = torch.empty(tuple(idx_size), device=device, dtype=torch.long) self._fill_indices(idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o, unique_indices) if is_scalar: src = random.random() else: src_size = [random.randint(1, 5) + s for s in idx_size] src = make_tensor(tuple(src_size), device=device, dtype=dtype) base = make_tensor((m, n, o), device=device, dtype=dtype) if reduction is not None: if fn is torch.Tensor.scatter_reduce_: actual = fn(base.clone(), dim, idx, src, reduce=reduction, include_self=include_self) else: actual = fn(base.clone(), dim, idx, src, reduce=reduction) else: actual = fn(base.clone(), dim, idx, src) expected = base.clone() counts = torch.zeros(base.shape, dtype=torch.long, device=device) + include_self for i in range(idx_size[0]): for j in range(idx_size[1]): for k in range(idx_size[2]): ii = [i, j, k] ii[dim] = idx[i, j, k] if fn is torch.Tensor.scatter_add_: expected[tuple(ii)] += src[i, j, k] else: # method may be 'scatter_', 'scatter', 'scatter_reduce' # or 'scatter_reduce_', the former two might have a reduction argument # while the latter two always do value = src if is_scalar else src[i, j, k] if ((not include_self) and counts[tuple(ii)] == 0): expected[tuple(ii)] = value else: if reduction == "add" or reduction == "sum": expected[tuple(ii)] += value elif reduction == "multiply" or reduction == "prod": expected[tuple(ii)] *= value elif reduction == "amax": expected[tuple(ii)] = max(expected[tuple(ii)], value) elif reduction == "amin": expected[tuple(ii)] = min(expected[tuple(ii)], value) elif reduction == "mean": expected[tuple(ii)] += value else: expected[tuple(ii)] = value counts[tuple(ii)] += 1 if (reduction == "mean"): counts.masked_fill_(counts == 0, 1) if (dtype.is_floating_point or dtype.is_complex): expected /= counts else: expected.div_(counts, rounding_mode="floor") if dtype == torch.float16 or dtype == torch.bfloat16: # Some CUDA kernels (e.g. indexing_backward_kernel_stride_1) that are called during # the test use fp32 for internal accumulation for improved accuracy. When using 16 bit # precision types can be small differences self.assertEqual(actual, expected, atol=0.04, rtol=0.05) else: self.assertEqual(actual, expected, atol=0, rtol=0) # Tests empty index dst = make_tensor((2, 2), device=device, dtype=dtype) idx = torch.tensor((), device=device, dtype=torch.long) src = make_tensor((2, 2), device=device, dtype=dtype) if reduction is not None: actual = fn(dst, 0, idx, src, reduce=reduction) else: actual = fn(dst, 0, idx, src) self.assertEqual(actual, dst, atol=0, rtol=0) @dtypes(torch.float16, torch.float32, torch.complex64) def test_scatter_(self, device, dtype): for deterministic in [False, True]: with DeterministicGuard(deterministic): self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype, is_scalar=False, reduction=None) @dtypes(torch.float16, torch.float32, torch.complex64) def test_scatter__scalar(self, device, dtype): self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype, is_scalar=True, reduction=None) # FIXME: RuntimeError: "cuda_scatter_gather_base_kernel_reduce_multiply" not implemented for 'ComplexFloat' @toleranceOverride({torch.float16: tol(atol=1e-2, rtol=0)}) @dtypesIfCUDA(torch.float16, torch.float32) @dtypes(torch.float16, torch.float32, torch.complex64) def test_scatter__reductions(self, device, dtype): for reduction in ("add", "multiply"): self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype, is_scalar=False, reduction=reduction) self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype, is_scalar=True, reduction=reduction) @dtypes(torch.float16, torch.float32, torch.complex64) def test_scatter_add_(self, device, dtype): for deterministic in [False, True]: with DeterministicGuard(deterministic): self._test_scatter_base(torch.Tensor.scatter_add_, device=device, dtype=dtype, is_scalar=False, reduction=None) @dtypes(torch.float32) def test_scatter_add_mult_index_base(self, device, dtype): for deterministic in [False, True]: with DeterministicGuard(deterministic): m, n = 30, 40 idx = torch.zeros(m, n, device=device, dtype=torch.long) src = torch.ones(m, n, device=device, dtype=dtype) res0 = torch.zeros(m, n, device=device, dtype=dtype).scatter_add_(0, idx, src) res1 = torch.zeros(m, n, device=device, dtype=dtype).scatter_add_(1, idx, src) self.assertEqual(res0[0, :], m * torch.ones(n, device=device, dtype=dtype), atol=0, rtol=0) self.assertEqual(res1[:, 0], n * torch.ones(m, device=device, dtype=dtype), atol=0, rtol=0) # FIXME: discrepancy between bool ReduceAdd on CUDA and CPU (a + b on CPU and buggy a && b on CUDA) @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=False)) def test_scatter_reduce_sum(self, device, dtype): for include_self in (True, False): for deterministic in [False, True]: with DeterministicGuard(deterministic): self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype, is_scalar=False, reduction='sum', unique_indices=False, include_self=include_self) @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True)) @dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False)) def test_scatter_reduce_prod(self, device, dtype): for include_self in (True, False): self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype, is_scalar=False, reduction='prod', unique_indices=False, include_self=include_self) @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=False)) @dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False)) def test_scatter_reduce_mean(self, device, dtype): for include_self in (True, False): for deterministic in [False, True]: with DeterministicGuard(deterministic): self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype, is_scalar=False, reduction='mean', unique_indices=False, include_self=include_self) @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False)) @dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False)) def test_scatter_reduce_amax(self, device, dtype): for include_self in (True, False): self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype, is_scalar=False, reduction='amax', unique_indices=False, include_self=include_self) # simple test for nan/inf propagation if (dtype.is_floating_point): input = torch.zeros(3, device=device, dtype=dtype) src = torch.tensor([1, float('nan'), -float('inf'), -float('inf'), 2, float('inf')], device=device, dtype=dtype) idx = torch.tensor([0, 0, 1, 1, 2, 2], device=device) input.scatter_reduce_(0, idx, src, 'amax', include_self=include_self) expected_result = torch.tensor([float('nan'), -float('inf'), float('inf')], device=device, dtype=dtype) if (include_self): expected_result[1] = 0 self.assertEqual(input, expected_result) @dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False)) @dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False)) def test_scatter_reduce_amin(self, device, dtype): for include_self in (True, False): self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype, is_scalar=False, reduction='amin', unique_indices=False, include_self=include_self) # simple test for nan/inf propagation if (dtype.is_floating_point): input = torch.zeros(3, device=device, dtype=dtype) src = torch.tensor([1, float('nan'), -2, -float('inf'), float('inf'), float('inf')], device=device, dtype=dtype) idx = torch.tensor([0, 0, 1, 1, 2, 2], device=device) input.scatter_reduce_(0, idx, src, 'amin', include_self=include_self) expected_result = torch.tensor([float('nan'), -float('inf'), float('inf')], device=device, dtype=dtype) if (include_self): expected_result[2] = 0 self.assertEqual(input, expected_result) @onlyCPU @dtypes(torch.float32, torch.float64, torch.bfloat16, torch.float16) def test_scatter_expanded_index(self, device, dtype): def helper(input_size, idx_size): input = torch.randn(input_size, device=device).to(dtype=dtype) input2 = input.clone() shape = [1] * len(input_size) shape[0] = idx_size dim_size = input_size[0] idx = torch.randint(0, dim_size, shape) # The fast path on scatter when index is expanded # will depend on sorted index where the collected src indice # for each row in input will be mapped to rowptrs in a CSR format. # Create some empty rows by masking: mask = (idx > 1) * (idx < 4) idx[mask] = 0 expanded_shape = input_size expanded_shape[0] = idx_size idx = idx.expand(expanded_shape) idx2 = idx.contiguous() src = torch.randn(expanded_shape, device=device).to(dtype=dtype) out = input.scatter_add(0, idx, src) out2 = input2.scatter_add(0, idx2, src) self.assertEqual(out, out2) for reduce in ["sum", "prod", "mean", "amax", "amin"]: for include_self in [True, False]: out = input.scatter_reduce(0, idx, src, reduce=reduce, include_self=include_self) out2 = input2.scatter_reduce(0, idx2, src, reduce=reduce, include_self=include_self) self.assertEqual(out, out2) helper([50, 17], 100) helper([50, 1], 100) helper([50, 8, 7], 100) helper([50, 3, 4, 5], 100) @onlyCPU @dtypes(torch.float32, torch.float64, torch.bfloat16) def test_gather_expanded_index(self, device, dtype): # Test when index is [N, 1], which would have stride [1, 0] # should be excluded from the fast path when index ix expanded input = torch.arange(25).view(5, 5) input2 = input.to(dtype=dtype) idx = torch.arange(5).view(5, 1) out = torch.gather(input, 0, idx) out2 = torch.gather(input2, 0, idx) self.assertEqual(out.to(dtype=dtype), out2) def helper(input_size, idx_size): input = torch.randn(input_size, device=device).to(dtype=dtype) input2 = input.clone() shape = [1] * len(input_size) shape[0] = idx_size dim_size = input_size[0] idx = torch.randint(0, dim_size, shape) # Test the fast path on gather when index is expanded expanded_shape = input_size expanded_shape[0] = idx_size idx = idx.expand(expanded_shape) idx2 = idx.contiguous() out = torch.gather(input, 0, idx) out2 = torch.gather(input2, 0, idx2) self.assertEqual(out, out2) helper([50, 17], 100) helper([50, 1], 100) helper([50, 8, 7], 100) helper([50, 3, 4, 5], 100) # Generic Device Test Framework instantation, see # https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests # for details. instantiate_device_type_tests(TestScatterGather, globals()) if __name__ == '__main__': run_tests()