# Owner(s): ["oncall: distributed"] import sys import torch from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, ShardMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import TensorProperties from torch.distributed.c10d_logger import _c10d_logger from torch.distributed.checkpoint.logger import _dcp_logger from torch.distributed.checkpoint.metadata import MetadataIndex from torch.distributed.checkpoint.utils import find_state_dict_object from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, TestCase, ) from torch.testing._internal.distributed.distributed_utils import with_fake_comms if TEST_WITH_DEV_DBG_ASAN: print( "Skip dev-asan as torch + multiprocessing spawn have known issues", file=sys.stderr, ) sys.exit(0) def create_sharded_tensor(rank, world_size, shards_per_rank): shards_metadata = [] local_shards = [] for idx in range(0, world_size * shards_per_rank): shard_rank = idx // shards_per_rank shard_md = ShardMetadata( shard_offsets=[idx * 8], shard_sizes=[8], placement=f"rank:{shard_rank}/cpu" ) shards_metadata.append(shard_md) if shard_rank == rank: shard = Shard.from_tensor_and_offsets( torch.rand(*shard_md.shard_sizes), shard_offsets=shard_md.shard_offsets, rank=rank, ) local_shards.append(shard) sharded_tensor_md = ShardedTensorMetadata( shards_metadata=shards_metadata, size=torch.Size([8 * len(shards_metadata)]), tensor_properties=TensorProperties.create_from_tensor(torch.zeros(1)), ) return ShardedTensor._init_from_local_shards_and_global_metadata( local_shards=local_shards, sharded_tensor_metadata=sharded_tensor_md ) class TestMedatadaIndex(TestCase): def test_init_convert_offset(self): a = MetadataIndex("foo", [1, 2]) b = MetadataIndex("foo", torch.Size([1, 2])) self.assertEqual(a, b) def test_index_hint_ignored_on_equals(self): a = MetadataIndex("foo") b = MetadataIndex("foo", index=99) self.assertEqual(a, b) def test_index_hint_ignored_on_hash(self): a = MetadataIndex("foo") b = MetadataIndex("foo", index=99) self.assertEqual(hash(a), hash(b)) def test_flat_data(self): state_dict = { "a": torch.rand(10), "b": [1, 2, 3], } a = find_state_dict_object(state_dict, MetadataIndex("a")) self.assertEqual(a, state_dict["a"]) a = find_state_dict_object(state_dict, MetadataIndex("a", [0])) self.assertEqual(a, state_dict["a"]) a = find_state_dict_object(state_dict, MetadataIndex("a", index=99)) self.assertEqual(a, state_dict["a"]) b = find_state_dict_object(state_dict, MetadataIndex("b")) self.assertEqual(b, state_dict["b"]) b = find_state_dict_object(state_dict, MetadataIndex("b", index=1)) self.assertEqual(b, state_dict["b"]) with self.assertRaisesRegex(ValueError, "FQN"): find_state_dict_object(state_dict, MetadataIndex("c")) with self.assertRaisesRegex(ValueError, "ShardedTensor"): find_state_dict_object(state_dict, MetadataIndex("b", [1])) @with_fake_comms(rank=0, world_size=2) def test_sharded_tensor_lookup(self): st = create_sharded_tensor(rank=0, world_size=2, shards_per_rank=3) state_dict = {"st": st} obj = find_state_dict_object(state_dict, MetadataIndex("st", [8])) self.assertEqual(obj, st.local_shards()[1].tensor) # good hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=1)) self.assertEqual(obj, st.local_shards()[1].tensor) # bad hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=2)) self.assertEqual(obj, st.local_shards()[1].tensor) # broken hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=99)) self.assertEqual(obj, st.local_shards()[1].tensor) with self.assertRaisesRegex(ValueError, "no offset was provided"): find_state_dict_object(state_dict, MetadataIndex("st")) with self.assertRaisesRegex(ValueError, "Could not find shard"): find_state_dict_object(state_dict, MetadataIndex("st", [1])) def test_dcp_logger(self): self.assertTrue(_c10d_logger is not _dcp_logger) self.assertEqual(1, len(_c10d_logger.handlers)) if __name__ == "__main__": run_tests()