/* * Copyright © 2021 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "brw_compiler.h" #include "brw_fs.h" #include "brw_fs_builder.h" #include "brw_nir.h" #include "brw_private.h" #include "compiler/nir/nir_builder.h" #include "dev/intel_debug.h" #include using namespace brw; static bool brw_nir_lower_load_uniforms_filter(const nir_instr *instr, UNUSED const void *data) { if (instr->type != nir_instr_type_intrinsic) return false; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); return intrin->intrinsic == nir_intrinsic_load_uniform; } static nir_def * brw_nir_lower_load_uniforms_impl(nir_builder *b, nir_instr *instr, UNUSED void *data) { assert(instr->type == nir_instr_type_intrinsic); nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); assert(intrin->intrinsic == nir_intrinsic_load_uniform); /* Read the first few 32-bit scalars from InlineData. */ if (nir_src_is_const(intrin->src[0]) && intrin->def.bit_size == 32 && intrin->def.num_components == 1) { unsigned off = nir_intrinsic_base(intrin) + nir_src_as_uint(intrin->src[0]); unsigned off_dw = off / 4; if (off % 4 == 0 && off_dw < BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW) { off_dw += BRW_TASK_MESH_PUSH_CONSTANTS_START_DW; return nir_load_mesh_inline_data_intel(b, 32, off_dw); } } return brw_nir_load_global_const(b, intrin, nir_load_mesh_inline_data_intel(b, 64, 0), 0); } static bool brw_nir_lower_load_uniforms(nir_shader *nir) { return nir_shader_lower_instructions(nir, brw_nir_lower_load_uniforms_filter, brw_nir_lower_load_uniforms_impl, NULL); } static inline int type_size_scalar_dwords(const struct glsl_type *type, bool bindless) { return glsl_count_dword_slots(type, bindless); } /* TODO(mesh): Make this a common function. */ static void shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align) { assert(glsl_type_is_vector_or_scalar(type)); uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8; unsigned length = glsl_get_vector_elements(type); *size = comp_size * length, *align = comp_size * (length == 3 ? 4 : length); } static bool brw_nir_lower_launch_mesh_workgroups_instr(nir_builder *b, nir_intrinsic_instr *intrin, void *data) { if (intrin->intrinsic != nir_intrinsic_launch_mesh_workgroups) return false; b->cursor = nir_before_instr(&intrin->instr); nir_def *local_invocation_index = nir_load_local_invocation_index(b); /* Make sure that the mesh workgroup size is taken from the first invocation * (nir_intrinsic_launch_mesh_workgroups requirement) */ nir_def *cmp = nir_ieq_imm(b, local_invocation_index, 0); nir_if *if_stmt = nir_push_if(b, cmp); { /* TUE header contains 4 words: * * - Word 0 for Task Count. * * - Words 1-3 used for "Dispatch Dimensions" feature, to allow mapping a * 3D dispatch into the 1D dispatch supported by HW. */ nir_def *x = nir_channel(b, intrin->src[0].ssa, 0); nir_def *y = nir_channel(b, intrin->src[0].ssa, 1); nir_def *z = nir_channel(b, intrin->src[0].ssa, 2); nir_def *task_count = nir_imul(b, x, nir_imul(b, y, z)); nir_def *tue_header = nir_vec4(b, task_count, x, y, z); nir_store_task_payload(b, tue_header, nir_imm_int(b, 0)); } nir_pop_if(b, if_stmt); nir_instr_remove(&intrin->instr); return true; } static bool brw_nir_lower_launch_mesh_workgroups(nir_shader *nir) { return nir_shader_intrinsics_pass(nir, brw_nir_lower_launch_mesh_workgroups_instr, nir_metadata_none, NULL); } static void brw_nir_lower_tue_outputs(nir_shader *nir, brw_tue_map *map) { memset(map, 0, sizeof(*map)); NIR_PASS(_, nir, nir_lower_io, nir_var_shader_out, type_size_scalar_dwords, nir_lower_io_lower_64bit_to_32); /* From bspec: "It is suggested that SW reserve the 16 bytes following the * TUE Header, and therefore start the SW-defined data structure at 32B * alignment. This allows the TUE Header to always be written as 32 bytes * with 32B alignment, the most optimal write performance case." */ map->per_task_data_start_dw = 8; /* Lowering to explicit types will start offsets from task_payload_size, so * set it to start after the header. */ nir->info.task_payload_size = map->per_task_data_start_dw * 4; NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, nir_var_mem_task_payload, shared_type_info); NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_task_payload, nir_address_format_32bit_offset); map->size_dw = ALIGN(DIV_ROUND_UP(nir->info.task_payload_size, 4), 8); } static void brw_print_tue_map(FILE *fp, const struct brw_tue_map *map) { fprintf(fp, "TUE (%d dwords)\n\n", map->size_dw); } static bool brw_nir_adjust_task_payload_offsets_instr(struct nir_builder *b, nir_intrinsic_instr *intrin, void *data) { switch (intrin->intrinsic) { case nir_intrinsic_store_task_payload: case nir_intrinsic_load_task_payload: { nir_src *offset_src = nir_get_io_offset_src(intrin); if (nir_src_is_const(*offset_src)) assert(nir_src_as_uint(*offset_src) % 4 == 0); b->cursor = nir_before_instr(&intrin->instr); /* Regular I/O uses dwords while explicit I/O used for task payload uses * bytes. Normalize it to dwords. * * TODO(mesh): Figure out how to handle 8-bit, 16-bit. */ nir_def *offset = nir_ishr_imm(b, offset_src->ssa, 2); nir_src_rewrite(offset_src, offset); unsigned base = nir_intrinsic_base(intrin); assert(base % 4 == 0); nir_intrinsic_set_base(intrin, base / 4); return true; } default: return false; } } static bool brw_nir_adjust_task_payload_offsets(nir_shader *nir) { return nir_shader_intrinsics_pass(nir, brw_nir_adjust_task_payload_offsets_instr, nir_metadata_control_flow, NULL); } void brw_nir_adjust_payload(nir_shader *shader) { /* Adjustment of task payload offsets must be performed *after* last pass * which interprets them as bytes, because it changes their unit. */ bool adjusted = false; NIR_PASS(adjusted, shader, brw_nir_adjust_task_payload_offsets); if (adjusted) /* clean up the mess created by offset adjustments */ NIR_PASS(_, shader, nir_opt_constant_folding); } static bool brw_nir_align_launch_mesh_workgroups_instr(nir_builder *b, nir_intrinsic_instr *intrin, void *data) { if (intrin->intrinsic != nir_intrinsic_launch_mesh_workgroups) return false; /* nir_lower_task_shader uses "range" as task payload size. */ unsigned range = nir_intrinsic_range(intrin); /* This will avoid special case in nir_lower_task_shader dealing with * not vec4-aligned payload when payload_in_shared workaround is enabled. */ nir_intrinsic_set_range(intrin, ALIGN(range, 16)); return true; } static bool brw_nir_align_launch_mesh_workgroups(nir_shader *nir) { return nir_shader_intrinsics_pass(nir, brw_nir_align_launch_mesh_workgroups_instr, nir_metadata_control_flow, NULL); } static void brw_emit_urb_fence(fs_visitor &s) { const fs_builder bld = fs_builder(&s).at_end(); brw_reg dst = bld.vgrf(BRW_TYPE_UD); fs_inst *fence = bld.emit(SHADER_OPCODE_MEMORY_FENCE, dst, brw_vec8_grf(0, 0), brw_imm_ud(true), brw_imm_ud(0)); fence->sfid = BRW_SFID_URB; /* The logical thing here would likely be a THREADGROUP fence but that's * still failing some tests like in dEQP-VK.mesh_shader.ext.query.* * * Gfx12.5 has a comment about this on BSpec 53533 : * * "If fence scope is Local or Threadgroup, HW ignores the flush type * and operates as if it was set to None (no flush)" * * Software workaround from HSD-22014129519 indicates that a GPU fence * resolves the issue. */ fence->desc = lsc_fence_msg_desc(s.devinfo, LSC_FENCE_GPU, LSC_FLUSH_TYPE_NONE, true); bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE, bld.null_reg_ud(), &dst, 1); } static bool run_task_mesh(fs_visitor &s, bool allow_spilling) { assert(s.stage == MESA_SHADER_TASK || s.stage == MESA_SHADER_MESH); s.payload_ = new task_mesh_thread_payload(s); nir_to_brw(&s); if (s.failed) return false; brw_emit_urb_fence(s); s.emit_cs_terminate(); brw_calculate_cfg(s); brw_fs_optimize(s); s.assign_curb_setup(); brw_fs_lower_3src_null_dest(s); brw_fs_workaround_memory_fence_before_eot(s); brw_fs_workaround_emit_dummy_mov_instruction(s); brw_allocate_registers(s, allow_spilling); return !s.failed; } const unsigned * brw_compile_task(const struct brw_compiler *compiler, struct brw_compile_task_params *params) { struct nir_shader *nir = params->base.nir; const struct brw_task_prog_key *key = params->key; struct brw_task_prog_data *prog_data = params->prog_data; const bool debug_enabled = brw_should_print_shader(nir, DEBUG_TASK); brw_nir_lower_tue_outputs(nir, &prog_data->map); NIR_PASS(_, nir, brw_nir_align_launch_mesh_workgroups); nir_lower_task_shader_options lower_ts_opt = { .payload_to_shared_for_atomics = true, .payload_to_shared_for_small_types = true, /* The actual payload data starts after the TUE header and padding, * so skip those when copying. */ .payload_offset_in_bytes = prog_data->map.per_task_data_start_dw * 4, }; NIR_PASS(_, nir, nir_lower_task_shader, lower_ts_opt); NIR_PASS(_, nir, brw_nir_lower_launch_mesh_workgroups); prog_data->base.base.stage = MESA_SHADER_TASK; prog_data->base.base.total_shared = nir->info.shared_size; prog_data->base.base.total_scratch = 0; prog_data->base.local_size[0] = nir->info.workgroup_size[0]; prog_data->base.local_size[1] = nir->info.workgroup_size[1]; prog_data->base.local_size[2] = nir->info.workgroup_size[2]; prog_data->uses_drawid = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID); brw_simd_selection_state simd_state{ .devinfo = compiler->devinfo, .prog_data = &prog_data->base, .required_width = brw_required_dispatch_width(&nir->info), }; std::unique_ptr v[3]; for (unsigned simd = 0; simd < 3; simd++) { if (!brw_simd_should_compile(simd_state, simd)) continue; const unsigned dispatch_width = 8 << simd; nir_shader *shader = nir_shader_clone(params->base.mem_ctx, nir); brw_nir_apply_key(shader, compiler, &key->base, dispatch_width); NIR_PASS(_, shader, brw_nir_lower_load_uniforms); NIR_PASS(_, shader, brw_nir_lower_simd, dispatch_width); brw_postprocess_nir(shader, compiler, debug_enabled, key->base.robust_flags); v[simd] = std::make_unique(compiler, ¶ms->base, &key->base, &prog_data->base.base, shader, dispatch_width, params->base.stats != NULL, debug_enabled); if (prog_data->base.prog_mask) { unsigned first = ffs(prog_data->base.prog_mask) - 1; v[simd]->import_uniforms(v[first].get()); } const bool allow_spilling = !brw_simd_any_compiled(simd_state); if (run_task_mesh(*v[simd], allow_spilling)) brw_simd_mark_compiled(simd_state, simd, v[simd]->spilled_any_registers); else simd_state.error[simd] = ralloc_strdup(params->base.mem_ctx, v[simd]->fail_msg); } int selected_simd = brw_simd_select(simd_state); if (selected_simd < 0) { params->base.error_str = ralloc_asprintf(params->base.mem_ctx, "Can't compile shader: " "SIMD8 '%s', SIMD16 '%s' and SIMD32 '%s'.\n", simd_state.error[0], simd_state.error[1], simd_state.error[2]); return NULL; } fs_visitor *selected = v[selected_simd].get(); prog_data->base.prog_mask = 1 << selected_simd; if (unlikely(debug_enabled)) { fprintf(stderr, "Task Output "); brw_print_tue_map(stderr, &prog_data->map); } fs_generator g(compiler, ¶ms->base, &prog_data->base.base, MESA_SHADER_TASK); if (unlikely(debug_enabled)) { g.enable_debug(ralloc_asprintf(params->base.mem_ctx, "%s task shader %s", nir->info.label ? nir->info.label : "unnamed", nir->info.name)); } g.generate_code(selected->cfg, selected->dispatch_width, selected->shader_stats, selected->performance_analysis.require(), params->base.stats); g.add_const_data(nir->constant_data, nir->constant_data_size); return g.get_assembly(); } static void brw_nir_lower_tue_inputs(nir_shader *nir, const brw_tue_map *map) { if (!map) return; nir->info.task_payload_size = map->per_task_data_start_dw * 4; bool progress = false; NIR_PASS(progress, nir, nir_lower_vars_to_explicit_types, nir_var_mem_task_payload, shared_type_info); if (progress) { /* The types for Task Output and Mesh Input should match, so their sizes * should also match. */ assert(map->size_dw == ALIGN(DIV_ROUND_UP(nir->info.task_payload_size, 4), 8)); } else { /* Mesh doesn't read any input, to make it clearer set the * task_payload_size to zero instead of keeping an incomplete size that * just includes the header. */ nir->info.task_payload_size = 0; } NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_task_payload, nir_address_format_32bit_offset); } /* Attribute types. Flat attributes have to be a separate class because * flat and interpolated attributes can't share the same vec4 slot * (see 3DSTATE_SBE.ConstantInterpolationEnable). */ enum { PRIM, /* per primitive */ VERT, /* per vertex interpolated */ VERT_FLAT, /* per vertex flat */ }; struct attr_desc { int location; const struct glsl_type *type; unsigned dwords; unsigned slots; }; struct attr_type_info { /* order of attributes, negative values are holes */ std::list *order; /* attributes after which there's hole of size equal to array index */ std::list holes[5]; }; static void brw_mue_assign_position(const struct attr_desc *attr, struct brw_mue_map *map, unsigned start_dw) { bool is_array = glsl_type_is_array(attr->type); int location = attr->location; unsigned remaining = attr->dwords; for (unsigned slot = 0; slot < attr->slots; ++slot) { map->start_dw[location + slot] = start_dw; unsigned sz; if (is_array) { assert(attr->dwords % attr->slots == 0); sz = attr->dwords / attr->slots; } else { sz = MIN2(remaining, 4); } map->len_dw[location + slot] = sz; start_dw += sz; remaining -= sz; } } static nir_variable * brw_nir_find_complete_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location) { nir_variable *best_var = NULL; unsigned last_size = 0; nir_foreach_variable_with_modes(var, shader, mode) { if (var->data.location != location) continue; unsigned new_size = glsl_count_dword_slots(var->type, false); if (new_size > last_size) { best_var = var; last_size = new_size; } } return best_var; } static unsigned brw_sum_size(const std::list &orders) { unsigned sz = 0; for (auto it = orders.cbegin(); it != orders.cend(); ++it) sz += (*it).dwords; return sz; } /* Finds order of outputs which require minimum size, without splitting * of URB read/write messages (which operate on vec4-aligned memory). */ static void brw_compute_mue_layout(const struct brw_compiler *compiler, std::list *orders, uint64_t outputs_written, struct nir_shader *nir, bool *pack_prim_data_into_header, bool *pack_vert_data_into_header) { const struct shader_info *info = &nir->info; struct attr_type_info data[3]; if ((compiler->mesh.mue_header_packing & 1) == 0) *pack_prim_data_into_header = false; if ((compiler->mesh.mue_header_packing & 2) == 0) *pack_vert_data_into_header = false; for (unsigned i = PRIM; i <= VERT_FLAT; ++i) data[i].order = &orders[i]; /* If packing into header is enabled, add a hole of size 4 and add * a virtual location to keep the algorithm happy (it expects holes * to be preceded by some location). We'll remove those virtual * locations at the end. */ const gl_varying_slot virtual_header_location = VARYING_SLOT_POS; assert((outputs_written & BITFIELD64_BIT(virtual_header_location)) == 0); struct attr_desc d; d.location = virtual_header_location; d.type = NULL; d.dwords = 0; d.slots = 0; struct attr_desc h; h.location = -1; h.type = NULL; h.dwords = 4; h.slots = 0; if (*pack_prim_data_into_header) { orders[PRIM].push_back(d); orders[PRIM].push_back(h); data[PRIM].holes[4].push_back(virtual_header_location); } if (*pack_vert_data_into_header) { orders[VERT].push_back(d); orders[VERT].push_back(h); data[VERT].holes[4].push_back(virtual_header_location); } u_foreach_bit64(location, outputs_written) { if ((BITFIELD64_BIT(location) & outputs_written) == 0) continue; /* At this point there are both complete and split variables as * outputs. We need the complete variable to compute the required * size. */ nir_variable *var = brw_nir_find_complete_variable_with_location(nir, nir_var_shader_out, location); d.location = location; d.type = brw_nir_get_var_type(nir, var); d.dwords = glsl_count_dword_slots(d.type, false); d.slots = glsl_count_attribute_slots(d.type, false); struct attr_type_info *type_data; if (BITFIELD64_BIT(location) & info->per_primitive_outputs) type_data = &data[PRIM]; else if (var->data.interpolation == INTERP_MODE_FLAT) type_data = &data[VERT_FLAT]; else type_data = &data[VERT]; std::list *order = type_data->order; std::list *holes = type_data->holes; outputs_written &= ~BITFIELD64_RANGE(location, d.slots); /* special case to use hole of size 4 */ if (d.dwords == 4 && !holes[4].empty()) { holes[4].pop_back(); assert(order->front().location == virtual_header_location); order->pop_front(); assert(order->front().location == -1); assert(order->front().dwords == 4); order->front() = d; continue; } int mod = d.dwords % 4; if (mod == 0) { order->push_back(d); continue; } h.location = -1; h.type = NULL; h.dwords = 4 - mod; h.slots = 0; if (!compiler->mesh.mue_compaction) { order->push_back(d); order->push_back(h); continue; } if (d.dwords > 4) { order->push_back(d); order->push_back(h); holes[h.dwords].push_back(location); continue; } assert(d.dwords < 4); unsigned found = 0; /* try to find the smallest hole big enough to hold this attribute */ for (unsigned sz = d.dwords; sz <= 4; sz++){ if (!holes[sz].empty()) { found = sz; break; } } /* append at the end if not found */ if (found == 0) { order->push_back(d); order->push_back(h); holes[h.dwords].push_back(location); continue; } assert(found <= 4); assert(!holes[found].empty()); int after_loc = holes[found].back(); holes[found].pop_back(); bool inserted_back = false; for (auto it = order->begin(); it != order->end(); ++it) { if ((*it).location != after_loc) continue; ++it; /* must be a hole */ assert((*it).location < 0); /* and it must be big enough */ assert(d.dwords <= (*it).dwords); if (d.dwords == (*it).dwords) { /* exact size, just replace */ *it = d; } else { /* inexact size, shrink hole */ (*it).dwords -= d.dwords; /* and insert new attribute before it */ order->insert(it, d); /* Insert shrunk hole in a spot so that the order of attributes * is preserved. */ std::list &hole_list = holes[(*it).dwords]; std::list::iterator insert_before = hole_list.end(); for (auto it2 = hole_list.begin(); it2 != hole_list.end(); ++it2) { if ((*it2) >= (int)location) { insert_before = it2; break; } } hole_list.insert(insert_before, location); } inserted_back = true; break; } assert(inserted_back); } if (*pack_prim_data_into_header) { if (orders[PRIM].front().location == virtual_header_location) orders[PRIM].pop_front(); if (!data[PRIM].holes[4].empty()) { *pack_prim_data_into_header = false; assert(orders[PRIM].front().location == -1); assert(orders[PRIM].front().dwords == 4); orders[PRIM].pop_front(); } if (*pack_prim_data_into_header) { unsigned sz = brw_sum_size(orders[PRIM]); if (sz % 8 == 0 || sz % 8 > 4) *pack_prim_data_into_header = false; } } if (*pack_vert_data_into_header) { if (orders[VERT].front().location == virtual_header_location) orders[VERT].pop_front(); if (!data[VERT].holes[4].empty()) { *pack_vert_data_into_header = false; assert(orders[VERT].front().location == -1); assert(orders[VERT].front().dwords == 4); orders[VERT].pop_front(); } if (*pack_vert_data_into_header) { unsigned sz = brw_sum_size(orders[VERT]) + brw_sum_size(orders[VERT_FLAT]); if (sz % 8 == 0 || sz % 8 > 4) *pack_vert_data_into_header = false; } } if (INTEL_DEBUG(DEBUG_MESH)) { fprintf(stderr, "MUE attribute order:\n"); for (unsigned i = PRIM; i <= VERT_FLAT; ++i) { if (!orders[i].empty()) fprintf(stderr, "%d: ", i); for (auto it = orders[i].cbegin(); it != orders[i].cend(); ++it) { fprintf(stderr, "%d(%d) ", (*it).location, (*it).dwords); } if (!orders[i].empty()) fprintf(stderr, "\n"); } } } /* Mesh URB Entry consists of an initial section * * - Primitive Count * - Primitive Indices (from 0 to Max-1) * - Padding to 32B if needed * * optionally followed by a section for per-primitive data, * in which each primitive (from 0 to Max-1) gets * * - Primitive Header (e.g. ViewportIndex) * - Primitive Custom Attributes * * then followed by a section for per-vertex data * * - Vertex Header (e.g. Position) * - Vertex Custom Attributes * * Each per-element section has a pitch and a starting offset. All the * individual attributes offsets in start_dw are considering the first entry * of the section (i.e. where the Position for first vertex, or ViewportIndex * for first primitive). Attributes for other elements are calculated using * the pitch. */ static void brw_compute_mue_map(const struct brw_compiler *compiler, struct nir_shader *nir, struct brw_mue_map *map, enum brw_mesh_index_format index_format, bool compact_mue) { memset(map, 0, sizeof(*map)); memset(&map->start_dw[0], -1, sizeof(map->start_dw)); memset(&map->len_dw[0], 0, sizeof(map->len_dw)); unsigned vertices_per_primitive = mesa_vertices_per_prim(nir->info.mesh.primitive_type); map->max_primitives = nir->info.mesh.max_primitives_out; map->max_vertices = nir->info.mesh.max_vertices_out; uint64_t outputs_written = nir->info.outputs_written; /* One dword for primitives count then K extra dwords for each primitive. */ switch (index_format) { case BRW_INDEX_FORMAT_U32: map->per_primitive_indices_dw = vertices_per_primitive; break; case BRW_INDEX_FORMAT_U888X: map->per_primitive_indices_dw = 1; break; default: unreachable("invalid index format"); } map->per_primitive_start_dw = ALIGN(map->per_primitive_indices_dw * map->max_primitives + 1, 8); /* Assign initial section. */ if (BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) & outputs_written) { map->start_dw[VARYING_SLOT_PRIMITIVE_COUNT] = 0; map->len_dw[VARYING_SLOT_PRIMITIVE_COUNT] = 1; outputs_written &= ~BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT); } if (BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) & outputs_written) { map->start_dw[VARYING_SLOT_PRIMITIVE_INDICES] = 1; map->len_dw[VARYING_SLOT_PRIMITIVE_INDICES] = map->per_primitive_indices_dw * map->max_primitives; outputs_written &= ~BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES); } const uint64_t per_primitive_header_bits = BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE) | BITFIELD64_BIT(VARYING_SLOT_LAYER) | BITFIELD64_BIT(VARYING_SLOT_VIEWPORT) | BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE); const uint64_t per_vertex_header_bits = BITFIELD64_BIT(VARYING_SLOT_PSIZ) | BITFIELD64_BIT(VARYING_SLOT_POS) | BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0) | BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1); std::list orders[3]; uint64_t regular_outputs = outputs_written & ~(per_primitive_header_bits | per_vertex_header_bits); /* packing into prim header is possible only if prim header is present */ map->user_data_in_primitive_header = compact_mue && (outputs_written & per_primitive_header_bits) != 0; /* Packing into vert header is always possible, but we allow it only * if full vec4 is available (so point size is not used) and there's * nothing between it and normal vertex data (so no clip distances). */ map->user_data_in_vertex_header = compact_mue && (outputs_written & per_vertex_header_bits) == BITFIELD64_BIT(VARYING_SLOT_POS); if (outputs_written & per_primitive_header_bits) { if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) { map->start_dw[VARYING_SLOT_PRIMITIVE_SHADING_RATE] = map->per_primitive_start_dw + 0; map->len_dw[VARYING_SLOT_PRIMITIVE_SHADING_RATE] = 1; } if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_LAYER)) { map->start_dw[VARYING_SLOT_LAYER] = map->per_primitive_start_dw + 1; /* RTAIndex */ map->len_dw[VARYING_SLOT_LAYER] = 1; } if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_VIEWPORT)) { map->start_dw[VARYING_SLOT_VIEWPORT] = map->per_primitive_start_dw + 2; map->len_dw[VARYING_SLOT_VIEWPORT] = 1; } if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE)) { map->start_dw[VARYING_SLOT_CULL_PRIMITIVE] = map->per_primitive_start_dw + 3; map->len_dw[VARYING_SLOT_CULL_PRIMITIVE] = 1; } map->per_primitive_header_size_dw = 8; outputs_written &= ~per_primitive_header_bits; } else { map->per_primitive_header_size_dw = 0; } map->per_primitive_data_size_dw = 0; /* For fast linked libraries, we can't pack the MUE, as the fragment shader * will be compiled without access to the MUE map and won't be able to find * out where everything is. * Instead, keep doing things as we did before the packing, just laying out * everything in varying order, which is how the FS will expect them. */ if (compact_mue) { brw_compute_mue_layout(compiler, orders, regular_outputs, nir, &map->user_data_in_primitive_header, &map->user_data_in_vertex_header); unsigned start_dw = map->per_primitive_start_dw; if (map->user_data_in_primitive_header) start_dw += 4; /* first 4 dwords are used */ else start_dw += map->per_primitive_header_size_dw; unsigned header_used_dw = 0; for (auto it = orders[PRIM].cbegin(); it != orders[PRIM].cend(); ++it) { int location = (*it).location; if (location < 0) { start_dw += (*it).dwords; if (map->user_data_in_primitive_header && header_used_dw < 4) header_used_dw += (*it).dwords; else map->per_primitive_data_size_dw += (*it).dwords; assert(header_used_dw <= 4); continue; } assert(map->start_dw[location] == -1); assert(location == VARYING_SLOT_PRIMITIVE_ID || location >= VARYING_SLOT_VAR0); brw_mue_assign_position(&*it, map, start_dw); start_dw += (*it).dwords; if (map->user_data_in_primitive_header && header_used_dw < 4) header_used_dw += (*it).dwords; else map->per_primitive_data_size_dw += (*it).dwords; assert(header_used_dw <= 4); outputs_written &= ~BITFIELD64_RANGE(location, (*it).slots); } } else { unsigned start_dw = map->per_primitive_start_dw + map->per_primitive_header_size_dw; uint64_t per_prim_outputs = outputs_written & nir->info.per_primitive_outputs; while (per_prim_outputs) { uint64_t location = ffsll(per_prim_outputs) - 1; assert(map->start_dw[location] == -1); assert(location == VARYING_SLOT_PRIMITIVE_ID || location >= VARYING_SLOT_VAR0); nir_variable *var = brw_nir_find_complete_variable_with_location(nir, nir_var_shader_out, location); struct attr_desc d; d.location = location; d.type = brw_nir_get_var_type(nir, var); d.dwords = glsl_count_dword_slots(d.type, false); d.slots = glsl_count_attribute_slots(d.type, false); brw_mue_assign_position(&d, map, start_dw); map->per_primitive_data_size_dw += ALIGN(d.dwords, 4); start_dw += ALIGN(d.dwords, 4); per_prim_outputs &= ~BITFIELD64_RANGE(location, d.slots); } } map->per_primitive_pitch_dw = ALIGN(map->per_primitive_header_size_dw + map->per_primitive_data_size_dw, 8); map->per_vertex_start_dw = ALIGN(map->per_primitive_start_dw + map->per_primitive_pitch_dw * map->max_primitives, 8); /* TODO(mesh): Multiview. */ unsigned fixed_header_size = 8; map->per_vertex_header_size_dw = ALIGN(fixed_header_size + nir->info.clip_distance_array_size + nir->info.cull_distance_array_size, 8); if (outputs_written & per_vertex_header_bits) { if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_PSIZ)) { map->start_dw[VARYING_SLOT_PSIZ] = map->per_vertex_start_dw + 3; map->len_dw[VARYING_SLOT_PSIZ] = 1; } if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_POS)) { map->start_dw[VARYING_SLOT_POS] = map->per_vertex_start_dw + 4; map->len_dw[VARYING_SLOT_POS] = 4; } if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0)) { map->start_dw[VARYING_SLOT_CLIP_DIST0] = map->per_vertex_start_dw + fixed_header_size + 0; map->len_dw[VARYING_SLOT_CLIP_DIST0] = 4; } if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1)) { map->start_dw[VARYING_SLOT_CLIP_DIST1] = map->per_vertex_start_dw + fixed_header_size + 4; map->len_dw[VARYING_SLOT_CLIP_DIST1] = 4; } outputs_written &= ~per_vertex_header_bits; } /* cull distances should be lowered earlier */ assert(!(outputs_written & BITFIELD64_BIT(VARYING_SLOT_CULL_DIST0))); assert(!(outputs_written & BITFIELD64_BIT(VARYING_SLOT_CULL_DIST1))); map->per_vertex_data_size_dw = 0; /* For fast linked libraries, we can't pack the MUE, as the fragment shader * will be compiled without access to the MUE map and won't be able to find * out where everything is. * Instead, keep doing things as we did before the packing, just laying out * everything in varying order, which is how the FS will expect them. */ if (compact_mue) { unsigned start_dw = map->per_vertex_start_dw; if (!map->user_data_in_vertex_header) start_dw += map->per_vertex_header_size_dw; unsigned header_used_dw = 0; for (unsigned type = VERT; type <= VERT_FLAT; ++type) { for (auto it = orders[type].cbegin(); it != orders[type].cend(); ++it) { int location = (*it).location; if (location < 0) { start_dw += (*it).dwords; if (map->user_data_in_vertex_header && header_used_dw < 4) { header_used_dw += (*it).dwords; assert(header_used_dw <= 4); if (header_used_dw == 4) start_dw += 4; /* jump over gl_position */ } else { map->per_vertex_data_size_dw += (*it).dwords; } continue; } assert(map->start_dw[location] == -1); assert(location >= VARYING_SLOT_VAR0); brw_mue_assign_position(&*it, map, start_dw); start_dw += (*it).dwords; if (map->user_data_in_vertex_header && header_used_dw < 4) { header_used_dw += (*it).dwords; assert(header_used_dw <= 4); if (header_used_dw == 4) start_dw += 4; /* jump over gl_position */ } else { map->per_vertex_data_size_dw += (*it).dwords; } outputs_written &= ~BITFIELD64_RANGE(location, (*it).slots); } } } else { unsigned start_dw = map->per_vertex_start_dw + map->per_vertex_header_size_dw; uint64_t per_vertex_outputs = outputs_written & ~nir->info.per_primitive_outputs; while (per_vertex_outputs) { uint64_t location = ffsll(per_vertex_outputs) - 1; assert(map->start_dw[location] == -1); assert(location >= VARYING_SLOT_VAR0); nir_variable *var = brw_nir_find_complete_variable_with_location(nir, nir_var_shader_out, location); struct attr_desc d; d.location = location; d.type = brw_nir_get_var_type(nir, var); d.dwords = glsl_count_dword_slots(d.type, false); d.slots = glsl_count_attribute_slots(d.type, false); brw_mue_assign_position(&d, map, start_dw); map->per_vertex_data_size_dw += ALIGN(d.dwords, 4); start_dw += ALIGN(d.dwords, 4); per_vertex_outputs &= ~BITFIELD64_RANGE(location, d.slots); } } map->per_vertex_pitch_dw = ALIGN(map->per_vertex_header_size_dw + map->per_vertex_data_size_dw, 8); map->size_dw = map->per_vertex_start_dw + map->per_vertex_pitch_dw * map->max_vertices; assert(map->size_dw % 8 == 0); } static void brw_print_mue_map(FILE *fp, const struct brw_mue_map *map, struct nir_shader *nir) { fprintf(fp, "MUE map (%d dwords, %d primitives, %d vertices)\n", map->size_dw, map->max_primitives, map->max_vertices); fprintf(fp, " <%4d, %4d>: VARYING_SLOT_PRIMITIVE_COUNT\n", map->start_dw[VARYING_SLOT_PRIMITIVE_COUNT], map->start_dw[VARYING_SLOT_PRIMITIVE_COUNT] + map->len_dw[VARYING_SLOT_PRIMITIVE_COUNT] - 1); fprintf(fp, " <%4d, %4d>: VARYING_SLOT_PRIMITIVE_INDICES\n", map->start_dw[VARYING_SLOT_PRIMITIVE_INDICES], map->start_dw[VARYING_SLOT_PRIMITIVE_INDICES] + map->len_dw[VARYING_SLOT_PRIMITIVE_INDICES] - 1); fprintf(fp, " ----- per primitive (start %d, header_size %d, data_size %d, pitch %d)\n", map->per_primitive_start_dw, map->per_primitive_header_size_dw, map->per_primitive_data_size_dw, map->per_primitive_pitch_dw); for (unsigned i = 0; i < VARYING_SLOT_MAX; i++) { if (map->start_dw[i] < 0) continue; const unsigned offset = map->start_dw[i]; const unsigned len = map->len_dw[i]; if (offset < map->per_primitive_start_dw || offset >= map->per_primitive_start_dw + map->per_primitive_pitch_dw) continue; const char *name = gl_varying_slot_name_for_stage((gl_varying_slot)i, MESA_SHADER_MESH); fprintf(fp, " <%4d, %4d>: %s (%d)\n", offset, offset + len - 1, name, i); } fprintf(fp, " ----- per vertex (start %d, header_size %d, data_size %d, pitch %d)\n", map->per_vertex_start_dw, map->per_vertex_header_size_dw, map->per_vertex_data_size_dw, map->per_vertex_pitch_dw); for (unsigned i = 0; i < VARYING_SLOT_MAX; i++) { if (map->start_dw[i] < 0) continue; const unsigned offset = map->start_dw[i]; const unsigned len = map->len_dw[i]; if (offset < map->per_vertex_start_dw || offset >= map->per_vertex_start_dw + map->per_vertex_pitch_dw) continue; nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_out, i); bool flat = var->data.interpolation == INTERP_MODE_FLAT; const char *name = gl_varying_slot_name_for_stage((gl_varying_slot)i, MESA_SHADER_MESH); fprintf(fp, " <%4d, %4d>: %s (%d)%s\n", offset, offset + len - 1, name, i, flat ? " (flat)" : ""); } fprintf(fp, "\n"); } static void brw_nir_lower_mue_outputs(nir_shader *nir, const struct brw_mue_map *map) { nir_foreach_shader_out_variable(var, nir) { int location = var->data.location; assert(location >= 0); assert(map->start_dw[location] != -1); var->data.driver_location = map->start_dw[location]; } NIR_PASS(_, nir, nir_lower_io, nir_var_shader_out, type_size_scalar_dwords, nir_lower_io_lower_64bit_to_32); } static void brw_nir_initialize_mue(nir_shader *nir, const struct brw_mue_map *map, unsigned dispatch_width) { assert(map->per_primitive_header_size_dw > 0); nir_builder b; nir_function_impl *entrypoint = nir_shader_get_entrypoint(nir); b = nir_builder_at(nir_before_impl(entrypoint)); nir_def *dw_off = nir_imm_int(&b, 0); nir_def *zerovec = nir_imm_vec4(&b, 0, 0, 0, 0); /* TODO(mesh): can we write in bigger batches, generating fewer SENDs? */ assert(!nir->info.workgroup_size_variable); const unsigned workgroup_size = nir->info.workgroup_size[0] * nir->info.workgroup_size[1] * nir->info.workgroup_size[2]; /* Invocations from a single workgroup will cooperate in zeroing MUE. */ /* How many prims each invocation needs to cover without checking its index? */ unsigned prims_per_inv = map->max_primitives / workgroup_size; /* Zero first 4 dwords of MUE Primitive Header: * Reserved, RTAIndex, ViewportIndex, CullPrimitiveMask. */ nir_def *local_invocation_index = nir_load_local_invocation_index(&b); /* Zero primitive headers distanced by workgroup_size, starting from * invocation index. */ for (unsigned prim_in_inv = 0; prim_in_inv < prims_per_inv; ++prim_in_inv) { nir_def *prim = nir_iadd_imm(&b, local_invocation_index, prim_in_inv * workgroup_size); nir_store_per_primitive_output(&b, zerovec, prim, dw_off, .base = (int)map->per_primitive_start_dw, .write_mask = WRITEMASK_XYZW, .component = 0, .src_type = nir_type_uint32); } /* How many prims are left? */ unsigned remaining = map->max_primitives % workgroup_size; if (remaining) { /* Zero "remaining" primitive headers starting from the last one covered * by the loop above + workgroup_size. */ nir_def *cmp = nir_ilt_imm(&b, local_invocation_index, remaining); nir_if *if_stmt = nir_push_if(&b, cmp); { nir_def *prim = nir_iadd_imm(&b, local_invocation_index, prims_per_inv * workgroup_size); nir_store_per_primitive_output(&b, zerovec, prim, dw_off, .base = (int)map->per_primitive_start_dw, .write_mask = WRITEMASK_XYZW, .component = 0, .src_type = nir_type_uint32); } nir_pop_if(&b, if_stmt); } /* If there's more than one subgroup, then we need to wait for all of them * to finish initialization before we can proceed. Otherwise some subgroups * may start filling MUE before other finished initializing. */ if (workgroup_size > dispatch_width) { nir_barrier(&b, SCOPE_WORKGROUP, SCOPE_WORKGROUP, NIR_MEMORY_ACQ_REL, nir_var_shader_out); } if (remaining) { nir_metadata_preserve(entrypoint, nir_metadata_none); } else { nir_metadata_preserve(entrypoint, nir_metadata_control_flow); } } static void brw_nir_adjust_offset(nir_builder *b, nir_intrinsic_instr *intrin, uint32_t pitch) { nir_src *index_src = nir_get_io_arrayed_index_src(intrin); nir_src *offset_src = nir_get_io_offset_src(intrin); b->cursor = nir_before_instr(&intrin->instr); nir_def *offset = nir_iadd(b, offset_src->ssa, nir_imul_imm(b, index_src->ssa, pitch)); nir_src_rewrite(offset_src, offset); } static bool brw_nir_adjust_offset_for_arrayed_indices_instr(nir_builder *b, nir_intrinsic_instr *intrin, void *data) { const struct brw_mue_map *map = (const struct brw_mue_map *) data; /* Remap per_vertex and per_primitive offsets using the extra source and * the pitch. */ switch (intrin->intrinsic) { case nir_intrinsic_load_per_vertex_output: case nir_intrinsic_store_per_vertex_output: brw_nir_adjust_offset(b, intrin, map->per_vertex_pitch_dw); return true; case nir_intrinsic_load_per_primitive_output: case nir_intrinsic_store_per_primitive_output: { struct nir_io_semantics sem = nir_intrinsic_io_semantics(intrin); uint32_t pitch; if (sem.location == VARYING_SLOT_PRIMITIVE_INDICES) pitch = map->per_primitive_indices_dw; else pitch = map->per_primitive_pitch_dw; brw_nir_adjust_offset(b, intrin, pitch); return true; } default: return false; } } static bool brw_nir_adjust_offset_for_arrayed_indices(nir_shader *nir, const struct brw_mue_map *map) { return nir_shader_intrinsics_pass(nir, brw_nir_adjust_offset_for_arrayed_indices_instr, nir_metadata_control_flow, (void *)map); } struct index_packing_state { unsigned vertices_per_primitive; nir_variable *original_prim_indices; nir_variable *packed_prim_indices; }; static bool brw_can_pack_primitive_indices(nir_shader *nir, struct index_packing_state *state) { /* can single index fit into one byte of U888X format? */ if (nir->info.mesh.max_vertices_out > 255) return false; state->vertices_per_primitive = mesa_vertices_per_prim(nir->info.mesh.primitive_type); /* packing point indices doesn't help */ if (state->vertices_per_primitive == 1) return false; state->original_prim_indices = nir_find_variable_with_location(nir, nir_var_shader_out, VARYING_SLOT_PRIMITIVE_INDICES); /* no indices = no changes to the shader, but it's still worth it, * because less URB space will be used */ if (!state->original_prim_indices) return true; ASSERTED const struct glsl_type *type = state->original_prim_indices->type; assert(glsl_type_is_array(type)); assert(glsl_type_is_vector(glsl_without_array(type))); assert(glsl_without_array(type)->vector_elements == state->vertices_per_primitive); nir_foreach_function_impl(impl, nir) { nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic != nir_intrinsic_store_deref) { /* any unknown deref operation on primitive indices -> don't pack */ unsigned num_srcs = nir_intrinsic_infos[intrin->intrinsic].num_srcs; for (unsigned i = 0; i < num_srcs; i++) { nir_deref_instr *deref = nir_src_as_deref(intrin->src[i]); if (!deref) continue; nir_variable *var = nir_deref_instr_get_variable(deref); if (var == state->original_prim_indices) return false; } continue; } nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]); if (!deref) continue; nir_variable *var = nir_deref_instr_get_variable(deref); if (var != state->original_prim_indices) continue; if (deref->deref_type != nir_deref_type_array) return false; /* unknown chain of derefs */ nir_deref_instr *var_deref = nir_src_as_deref(deref->parent); if (!var_deref || var_deref->deref_type != nir_deref_type_var) return false; /* unknown chain of derefs */ assert (var_deref->var == state->original_prim_indices); unsigned write_mask = nir_intrinsic_write_mask(intrin); /* If only some components are written, then we can't easily pack. * In theory we could, by loading current dword value, bitmasking * one byte and storing back the whole dword, but it would be slow * and could actually decrease performance. TODO: reevaluate this * once there will be something hitting this. */ if (write_mask != BITFIELD_MASK(state->vertices_per_primitive)) return false; } } } return true; } static bool brw_pack_primitive_indices_instr(nir_builder *b, nir_intrinsic_instr *intrin, void *data) { if (intrin->intrinsic != nir_intrinsic_store_deref) return false; nir_deref_instr *array_deref = nir_src_as_deref(intrin->src[0]); if (!array_deref || array_deref->deref_type != nir_deref_type_array) return false; nir_deref_instr *var_deref = nir_src_as_deref(array_deref->parent); if (!var_deref || var_deref->deref_type != nir_deref_type_var) return false; struct index_packing_state *state = (struct index_packing_state *)data; nir_variable *var = var_deref->var; if (var != state->original_prim_indices) return false; unsigned vertices_per_primitive = state->vertices_per_primitive; b->cursor = nir_before_instr(&intrin->instr); nir_deref_instr *new_var_deref = nir_build_deref_var(b, state->packed_prim_indices); nir_deref_instr *new_array_deref = nir_build_deref_array(b, new_var_deref, array_deref->arr.index.ssa); nir_src *data_src = &intrin->src[1]; nir_def *data_def = data_src->ssa; nir_def *new_data = nir_ior(b, nir_ishl_imm(b, nir_channel(b, data_def, 0), 0), nir_ishl_imm(b, nir_channel(b, data_def, 1), 8)); if (vertices_per_primitive >= 3) { new_data = nir_ior(b, new_data, nir_ishl_imm(b, nir_channel(b, data_def, 2), 16)); } nir_build_store_deref(b, &new_array_deref->def, new_data); nir_instr_remove(&intrin->instr); return true; } static bool brw_pack_primitive_indices(nir_shader *nir, void *data) { struct index_packing_state *state = (struct index_packing_state *)data; const struct glsl_type *new_type = glsl_array_type(glsl_uint_type(), nir->info.mesh.max_primitives_out, 0); state->packed_prim_indices = nir_variable_create(nir, nir_var_shader_out, new_type, "gl_PrimitiveIndicesPacked"); state->packed_prim_indices->data.location = VARYING_SLOT_PRIMITIVE_INDICES; state->packed_prim_indices->data.interpolation = INTERP_MODE_NONE; state->packed_prim_indices->data.per_primitive = 1; return nir_shader_intrinsics_pass(nir, brw_pack_primitive_indices_instr, nir_metadata_control_flow, data); } static bool brw_mesh_autostrip_enable(const struct brw_compiler *compiler, struct nir_shader *nir, struct brw_mue_map *map) { /* Auto-striping can be enabled when shader either doesn't write to * RTA Index and VP Index or writes the same values for all primitives. * Since determining whether shader writes the same value across the whole * workgroup (not just subgroup!) is tricky, we do the simplest possible * thing - say yes only when shader writes const values and they all match. * * TODO: improve this */ if (compiler->devinfo->ver < 20) return false; if (map->start_dw[VARYING_SLOT_VIEWPORT] < 0 && map->start_dw[VARYING_SLOT_LAYER] < 0) return true; nir_def *vp = NULL; nir_def *layer = NULL; nir_foreach_function(function, nir) { if (!function->impl) continue; nir_foreach_block(block, function->impl) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic != nir_intrinsic_store_per_primitive_output) continue; struct nir_io_semantics io = nir_intrinsic_io_semantics(intrin); bool is_vp = io.location == VARYING_SLOT_VIEWPORT; bool is_layer = io.location == VARYING_SLOT_LAYER; if (!is_vp && !is_layer) continue; nir_src *src = &intrin->src[0]; if (!nir_src_is_const(*src)) return false; nir_def **cmp; if (is_vp) cmp = &vp; else cmp = &layer; if (*cmp == NULL) *cmp = src->ssa; else if (*cmp != src->ssa) return false; } } } return true; } const unsigned * brw_compile_mesh(const struct brw_compiler *compiler, struct brw_compile_mesh_params *params) { struct nir_shader *nir = params->base.nir; const struct brw_mesh_prog_key *key = params->key; struct brw_mesh_prog_data *prog_data = params->prog_data; const bool debug_enabled = brw_should_print_shader(nir, DEBUG_MESH); prog_data->base.base.stage = MESA_SHADER_MESH; prog_data->base.base.total_shared = nir->info.shared_size; prog_data->base.base.total_scratch = 0; prog_data->base.local_size[0] = nir->info.workgroup_size[0]; prog_data->base.local_size[1] = nir->info.workgroup_size[1]; prog_data->base.local_size[2] = nir->info.workgroup_size[2]; prog_data->clip_distance_mask = (1 << nir->info.clip_distance_array_size) - 1; prog_data->cull_distance_mask = ((1 << nir->info.cull_distance_array_size) - 1) << nir->info.clip_distance_array_size; prog_data->primitive_type = nir->info.mesh.primitive_type; struct index_packing_state index_packing_state = {}; if (brw_can_pack_primitive_indices(nir, &index_packing_state)) { if (index_packing_state.original_prim_indices) NIR_PASS(_, nir, brw_pack_primitive_indices, &index_packing_state); prog_data->index_format = BRW_INDEX_FORMAT_U888X; } else { prog_data->index_format = BRW_INDEX_FORMAT_U32; } prog_data->uses_drawid = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID); brw_nir_lower_tue_inputs(nir, params->tue_map); brw_compute_mue_map(compiler, nir, &prog_data->map, prog_data->index_format, key->compact_mue); brw_nir_lower_mue_outputs(nir, &prog_data->map); prog_data->autostrip_enable = brw_mesh_autostrip_enable(compiler, nir, &prog_data->map); brw_simd_selection_state simd_state{ .devinfo = compiler->devinfo, .prog_data = &prog_data->base, .required_width = brw_required_dispatch_width(&nir->info), }; std::unique_ptr v[3]; for (int simd = 0; simd < 3; simd++) { if (!brw_simd_should_compile(simd_state, simd)) continue; const unsigned dispatch_width = 8 << simd; nir_shader *shader = nir_shader_clone(params->base.mem_ctx, nir); /* * When Primitive Header is enabled, we may not generates writes to all * fields, so let's initialize everything. */ if (prog_data->map.per_primitive_header_size_dw > 0) NIR_PASS_V(shader, brw_nir_initialize_mue, &prog_data->map, dispatch_width); brw_nir_apply_key(shader, compiler, &key->base, dispatch_width); NIR_PASS(_, shader, brw_nir_adjust_offset_for_arrayed_indices, &prog_data->map); /* Load uniforms can do a better job for constants, so fold before it. */ NIR_PASS(_, shader, nir_opt_constant_folding); NIR_PASS(_, shader, brw_nir_lower_load_uniforms); NIR_PASS(_, shader, brw_nir_lower_simd, dispatch_width); brw_postprocess_nir(shader, compiler, debug_enabled, key->base.robust_flags); v[simd] = std::make_unique(compiler, ¶ms->base, &key->base, &prog_data->base.base, shader, dispatch_width, params->base.stats != NULL, debug_enabled); if (prog_data->base.prog_mask) { unsigned first = ffs(prog_data->base.prog_mask) - 1; v[simd]->import_uniforms(v[first].get()); } const bool allow_spilling = !brw_simd_any_compiled(simd_state); if (run_task_mesh(*v[simd], allow_spilling)) brw_simd_mark_compiled(simd_state, simd, v[simd]->spilled_any_registers); else simd_state.error[simd] = ralloc_strdup(params->base.mem_ctx, v[simd]->fail_msg); } int selected_simd = brw_simd_select(simd_state); if (selected_simd < 0) { params->base.error_str = ralloc_asprintf(params->base.mem_ctx, "Can't compile shader: " "SIMD8 '%s', SIMD16 '%s' and SIMD32 '%s'.\n", simd_state.error[0], simd_state.error[1], simd_state.error[2]); return NULL; } fs_visitor *selected = v[selected_simd].get(); prog_data->base.prog_mask = 1 << selected_simd; if (unlikely(debug_enabled)) { if (params->tue_map) { fprintf(stderr, "Mesh Input "); brw_print_tue_map(stderr, params->tue_map); } fprintf(stderr, "Mesh Output "); brw_print_mue_map(stderr, &prog_data->map, nir); } fs_generator g(compiler, ¶ms->base, &prog_data->base.base, MESA_SHADER_MESH); if (unlikely(debug_enabled)) { g.enable_debug(ralloc_asprintf(params->base.mem_ctx, "%s mesh shader %s", nir->info.label ? nir->info.label : "unnamed", nir->info.name)); } g.generate_code(selected->cfg, selected->dispatch_width, selected->shader_stats, selected->performance_analysis.require(), params->base.stats); g.add_const_data(nir->constant_data, nir->constant_data_size); return g.get_assembly(); }