/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #include #include #include #include namespace torch { namespace executor { namespace native { using Tensor = exec_aten::Tensor; using Scalar = exec_aten::Scalar; using ScalarType = exec_aten::ScalarType; namespace { /** * Asserts that the parameters are valid. */ void check_embedding_byte_args( const Tensor& weight, const Tensor& weight_scales, const exec_aten::optional& opt_weight_zero_points, const int64_t weight_quant_min, const int64_t weight_quant_max, const Tensor& indices, exec_aten::optional out_dtype, Tensor& out) { ET_CHECK_MSG( weight.dim() == 2, "weight must be 2D but got() %zd dims", weight.dim()); ET_CHECK_MSG( weight_scales.dim() == 1 || weight_scales.dim() == 2, "weight_scales must be 1D or 2D but got() %zd dims", weight_scales.dim()); ET_CHECK_MSG( weight_scales.size(0) == weight.size(0), "Number of scales must be == weight.size(0)=%zd" ", but got %zd", weight_scales.size(0), weight.size(0)); if (weight_scales.dim() == 2) { auto num_groups = weight_scales.size(1); ET_CHECK_MSG( weight.size(1) % num_groups == 0, "Number of groups must divide weight.size(1)=%zd" ", but got # of groups = %zd", weight.size(1), num_groups); } ET_CHECK_MSG( weight.scalar_type() == ScalarType::Byte || weight.scalar_type() == ScalarType::Char, "weight.scalar_type() %" PRId8 " is not supported:", static_cast(weight.scalar_type())); ET_CHECK_MSG( out.scalar_type() == ScalarType::Float || out.scalar_type() == ScalarType::Half, "out.scalar_type() %" PRId8 " is not supported:", static_cast(out.scalar_type())); ET_CHECK_MSG( weight_scales.scalar_type() == ScalarType::Float || weight_scales.scalar_type() == ScalarType::Half, "weight_scales.scalar_type() %" PRId8 " is not supported:", static_cast(weight_scales.scalar_type())); if (opt_weight_zero_points.has_value()) { ET_CHECK_MSG( opt_weight_zero_points.value().dim() == weight_scales.dim(), "weight_zero_points's rank match that of weight_scales. " "weight_zero_points rank: %" PRId8 ", weight_scales rank: %" PRId8, static_cast(opt_weight_zero_points.value().dim()), static_cast(weight_scales.dim())); ET_CHECK_MSG( opt_weight_zero_points.value().scalar_type() == out.scalar_type(), "weight zero points scalar type %" PRId8 " does not match out.scalar_type()", static_cast(opt_weight_zero_points.value().scalar_type())); for (int32_t i = 0; i < weight_scales.dim(); ++i) { ET_CHECK_MSG( opt_weight_zero_points.value().size(i) == weight_scales.size(i), "Dimension size misatch at dim %" PRIi32 "Weight_zero_point size = %zd" ", weight_scales size = %zd.", i, opt_weight_zero_points.value().size(i), weight_scales.size(i)); } } ET_CHECK_MSG( indices.scalar_type() == ScalarType::Long, "indices.scalar_type() %" PRId8 " is not Long only Long is supported:", static_cast(indices.scalar_type())); ET_CHECK_MSG( weight_quant_min <= weight_quant_max, "weight quant min: %" PRId64 " is greater than weight quant max: %" PRId64, weight_quant_min, weight_quant_max); if (out_dtype.has_value()) { ET_CHECK_MSG( out.scalar_type() == out_dtype.value(), "output_dtype must match the dtype of the out tensor"); } } /** * Retrieves the embeddings specified by indices, dequantizes them, and stores * them in out */ template void embedding_byte_per_channel( const Tensor& weight, const Tensor& weight_scales, const exec_aten::optional& opt_weight_zero_points, const Tensor& indices, Tensor& out) { // An embedding layer nn.Embedding(num_embeddings, embedding_dim) has a // weight of shape (num_embeddings, embedding_dim). auto embedding_dim = weight.size(1); int32_t num_groups_per_channel = 1; if (weight_scales.dim() == 2) { num_groups_per_channel = weight_scales.size(1); } int32_t group_size = weight.size(1) / num_groups_per_channel; CTYPE_OUT* out_data = out.mutable_data_ptr(); const int64_t* indices_ptr = indices.const_data_ptr(); const CTYPE_PARAMS* scales = weight_scales.const_data_ptr(); const CTYPE_PARAMS* zero_points = nullptr; if (opt_weight_zero_points.has_value()) { zero_points = opt_weight_zero_points.value().const_data_ptr(); } for (int i = 0; i < indices.numel(); i++) { int64_t index = indices_ptr[i]; // If using groupwise embedding int32_t qparams_index = index * num_groups_per_channel; CTYPE_PARAMS zp = 0.0; const CTYPE_PARAMS* scale_ptr = scales + qparams_index; const CTYPE_PARAMS* zero_points_ptr = nullptr; if (opt_weight_zero_points.has_value()) { zero_points_ptr = zero_points + qparams_index; } const CTYPE_WEIGHT* w_data = weight.const_data_ptr() + embedding_dim * index; for (int j = 0; j < embedding_dim; ++j) { int32_t group_id = j / group_size; const CTYPE_PARAMS scale = scale_ptr[group_id]; if (opt_weight_zero_points.has_value()) { zp = zero_points_ptr[group_id]; } out_data[j] = static_cast( (static_cast(w_data[j]) - static_cast(zp)) * static_cast(scale)); } out_data += embedding_dim; } } void resize_out_tensor( const Tensor& weight, const Tensor& indices, Tensor& out) { exec_aten::SizesType expected_output_size[kTensorDimensionLimit]; for (size_t i = 0; i < indices.dim(); i++) { expected_output_size[i] = indices.size(i); } const size_t embedding_dim = weight.size(1); expected_output_size[out.dim() - 1] = embedding_dim; exec_aten::ArrayRef output_size{ expected_output_size, static_cast(out.dim())}; torch::executor::Error err = resize_tensor(out, output_size); ET_CHECK_MSG( err == torch::executor::Error::Ok, "Failed to resize out Tensor in quantized_embedding_byte_out"); } } // namespace /** * Retrieves the embeddings specified by indices, dequantizes them, and stores * them in out. The weight is quantized per channel, with a scale and zero_point * for each embedding. * * Corresponds as the out variant to torch.ops.quantized.embedding_byte * * NOTE: quant_min, quant_max, and Dtype are not used in computation, but rather * metadata that is passed around which can be useful for pattern matching. See * https://github.com/pytorch/pytorch/pull/87093#discussion_r1000841181 for more * info. */ Tensor& quantized_embedding_byte_out( // TODO Evaluate whether this name is appropriate for an operator that takes // non quant input and returns fp output const Tensor& weight, const Tensor& weight_scales, const exec_aten::optional& opt_weight_zero_points, const int64_t weight_quant_min, const int64_t weight_quant_max, const Tensor& indices, Tensor& out) { ScalarType w_type = weight.scalar_type(); ScalarType out_type = out.scalar_type(); // TODO (jakeszwe): improve these to account for the size of out in relation // to weight and indices accounting for a possible batch dimension check_embedding_byte_args( weight, weight_scales, opt_weight_zero_points, weight_quant_min, weight_quant_max, indices, out_type, out); constexpr auto name = "quantized_decomposed::embedding_byte.out"; ET_SWITCH_TWO_TYPES(Byte, Char, w_type, ctx, name, CTYPE_W, [&]() { ET_SWITCH_TWO_TYPES(Float, Half, out_type, ctx, name, CTYPE_OUT, [&]() { embedding_byte_per_channel( weight, weight_scales, opt_weight_zero_points, indices, out); }); }); return out; } Tensor& quantized_embedding_byte_out( KernelRuntimeContext& context, const Tensor& weight, const Tensor& weight_scales, const exec_aten::optional& opt_weight_zero_points, int64_t weight_quant_min, int64_t weight_quant_max, const Tensor& indices, Tensor& out) { // TODO(larryliu): Add a context arg to the real op function and remove this // wrapper (void)context; resize_out_tensor(weight, indices, out); return quantized_embedding_byte_out( weight, weight_scales, opt_weight_zero_points, weight_quant_min, weight_quant_max, indices, out); } Tensor& quantized_embedding_byte_dtype_out( // TODO Evaluate whether this name is appropriate for an operator that takes // non quant input and returns fp output const Tensor& weight, const Tensor& weight_scales, const exec_aten::optional& opt_weight_zero_points, const int64_t weight_quant_min, const int64_t weight_quant_max, const Tensor& indices, exec_aten::optional out_dtype, Tensor& out) { // TODO (jakeszwe): improve these to account for the size of out in relation // to weight and indices accounting for a possible batch dimension check_embedding_byte_args( weight, weight_scales, opt_weight_zero_points, weight_quant_min, weight_quant_max, indices, out_dtype, out); ScalarType weight_type = weight.scalar_type(); ScalarType params_type = weight_scales.scalar_type(); ScalarType out_type = out.scalar_type(); constexpr auto name = "quantized_decomposed::embedding_byte.dtype_out"; ET_SWITCH_TWO_TYPES(Byte, Char, weight_type, ctx, name, CTYPE_W, [&]() { ET_SWITCH_TWO_TYPES(Float, Half, params_type, ctx, name, CTYPE_P, [&]() { ET_SWITCH_TWO_TYPES(Float, Half, out_type, ctx, name, CTYPE_OUT, [&]() { embedding_byte_per_channel( weight, weight_scales, opt_weight_zero_points, indices, out); }); }); }); return out; } Tensor& quantized_embedding_byte_dtype_out( KernelRuntimeContext& context, const Tensor& weight, const Tensor& weight_scales, const exec_aten::optional& opt_weight_zero_points, int64_t weight_quant_min, int64_t weight_quant_max, const Tensor& indices, exec_aten::optional out_dtype, Tensor& out) { // TODO(larryliu): Add a context arg to the real op function and remove this // wrapper (void)context; resize_out_tensor(weight, indices, out); return quantized_embedding_byte_dtype_out( weight, weight_scales, opt_weight_zero_points, weight_quant_min, weight_quant_max, indices, out_dtype, out); } } // namespace native } // namespace executor } // namespace torch