/*
 * Copyright (c) 2021-2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/cpu/kernels/CpuAddKernel.h"

#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "src/core/CPP/Validate.h"
#include "src/core/common/Registrars.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/cpu/kernels/add/list.h"
#include <array>

#if defined(ENABLE_FP32_KERNELS)
namespace
{
    static constexpr size_t default_mws_N1_fp32_neon = 24536;
    static constexpr size_t default_mws_V1_fp32_neon = 40510;
}
#endif /* ENABLE_FP32_KERNELS */

namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
static const std::vector<CpuAddKernel::AddKernel> available_kernels =
{
    {
        "neon_qu8_add_fixedpoint",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::QASYMM8) && data.can_use_fixedpoint;
        },
        REGISTER_FP32_NEON(arm_compute::cpu::add_q8_neon_fixedpoint<uint8_t>)
    },
    {
        "neon_qs8_add_fixedpoint",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::QASYMM8_SIGNED) && data.can_use_fixedpoint;
        },
        REGISTER_FP32_NEON(arm_compute::cpu::add_q8_neon_fixedpoint<int8_t>)
    },
    {
        "sve2_qu8_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::QASYMM8) && data.isa.sve2;
        },
        REGISTER_QASYMM8_SVE2(arm_compute::cpu::add_qasymm8_sve2)
    },
    {
        "sve2_qs8_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::QASYMM8_SIGNED) && data.isa.sve2;
        },
        REGISTER_QASYMM8_SIGNED_SVE2(arm_compute::cpu::add_qasymm8_signed_sve2)
    },
    {
        "sve2_qs16_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::QSYMM16) && data.isa.sve2;
        },
        REGISTER_QSYMM16_SVE2(arm_compute::cpu::add_qsymm16_sve2)
    },
    {
        "sve_fp32_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::F32) && data.isa.sve;
        },
        REGISTER_FP32_SVE(arm_compute::cpu::add_fp32_sve)
    },
    {
        "sve_fp16_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::F16) && data.isa.sve && data.isa.fp16;
        },
        REGISTER_FP16_SVE(arm_compute::cpu::add_fp16_sve)
    },
    {
        "sve_u8_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::U8) && data.isa.sve;
        },
        REGISTER_INTEGER_SVE(arm_compute::cpu::add_u8_sve)
    },
    {
        "sve_s16_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::S16) && data.isa.sve;
        },
        REGISTER_INTEGER_SVE(arm_compute::cpu::add_s16_sve)
    },
    {
        "sve_s32_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::S32) && data.isa.sve;
        },
        REGISTER_INTEGER_SVE(arm_compute::cpu::add_s32_sve)
    },
    {
        "neon_fp32_add",
        [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::F32); },
        REGISTER_FP32_NEON(arm_compute::cpu::add_fp32_neon)
    },
    {
        "neon_fp16_add",
        [](const CpuAddKernelDataTypeISASelectorData & data)
        {
            return (data.dt == DataType::F16) && data.isa.fp16;
        },
        REGISTER_FP16_NEON(arm_compute::cpu::add_fp16_neon)
    },
    {
        "neon_u8_add",
        [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::U8); },
        REGISTER_INTEGER_NEON(arm_compute::cpu::add_u8_neon)
    },
    {
        "neon_s16_add",
        [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::S16); },
        REGISTER_INTEGER_NEON(arm_compute::cpu::add_s16_neon)
    },
    {
        "neon_s32_add",
        [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::S32); },
        REGISTER_INTEGER_NEON(arm_compute::cpu::add_s32_neon)
    },
    {
        "neon_qu8_add",
        [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8); },
        REGISTER_QASYMM8_NEON(arm_compute::cpu::add_qasymm8_neon)
    },
    {
        "neon_qs8_add",
        [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
        REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::add_qasymm8_signed_neon)
    },
    {
        "neon_qs16_add",
        [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::QSYMM16); },
        REGISTER_QSYMM16_NEON(arm_compute::cpu::add_qsymm16_neon)
    }
};

Status validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst, ConvertPolicy policy)
{
    ARM_COMPUTE_UNUSED(policy);

    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src0);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
                                                         DataType::S16, DataType::QSYMM16, DataType::F16,
                                                         DataType::S32, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &src1);

    const TensorShape out_shape = TensorShape::broadcast_shape(src0.tensor_shape(), src1.tensor_shape());

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((src0.tensor_shape().x() != src1.tensor_shape().x()) && ((src0.data_type() != src1.data_type()) || (src0.data_type() != dst.data_type())
                                                                                             || (src1.data_type() != dst.data_type())),
                                    "Broadcasting across width is supported on configurations where all tensors have the same data type");

    // Validate in case of configured dst
    if(dst.total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &dst);
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0),
                                        "Wrong shape for dst");
    }

    const auto can_use_fixedpoint = add_q8_neon_fixedpoint_possible(&src0, &src1, &dst);
    const auto uk = CpuAddKernel::get_implementation<CpuAddKernelDataTypeISASelectorData>(CpuAddKernelDataTypeISASelectorData{ src0.data_type(),
                                                                                          CPUInfo::get().get_isa(), can_use_fixedpoint });
    ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);

    return Status{};
}
} // namespace

void CpuAddKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst, ConvertPolicy policy)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst, policy));

    const auto can_use_fixedpoint     = add_q8_neon_fixedpoint_possible(src0, src1, dst);
    const auto uk                     = CpuAddKernel::get_implementation<CpuAddKernelDataTypeISASelectorData>(CpuAddKernelDataTypeISASelectorData{ src0->data_type(),
                                                                                                              CPUInfo::get().get_isa(), can_use_fixedpoint });

    ARM_COMPUTE_ERROR_ON_NULLPTR(uk);

    _policy     = policy;
    _run_method = uk->ukernel;
    _name       = std::string("CpuAddKernel").append("/").append(uk->name);

    // Auto initialize dst if not initialized
    const TensorShape &out_shape = TensorShape::broadcast_shape(src0->tensor_shape(), src1->tensor_shape());
    set_shape_if_empty(*dst, out_shape);
    set_data_type_if_unknown(*dst, src0->data_type());

    // Configure kernel window
    Window win;
    std::tie(win, _split_dimension) = calculate_squashed_or_max_window(*src0, *src1);

    ICpuKernel::configure(win);
}

Status CpuAddKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, ConvertPolicy policy)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);

    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst, policy));

    return Status{};
}

void CpuAddKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);

    ARM_COMPUTE_ERROR_ON(tensors.empty());
    ARM_COMPUTE_ERROR_ON(_run_method == nullptr);

    const ITensor *src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
    const ITensor *src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
    ITensor       *dst  = tensors.get_tensor(TensorType::ACL_DST);

    _run_method(src0, src1, dst, _policy, window);
}

const char *CpuAddKernel::name() const
{
    return _name.c_str();
}

const std::vector<CpuAddKernel::AddKernel> &CpuAddKernel::get_available_kernels()
{
    return available_kernels;
}

size_t CpuAddKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
{
    ARM_COMPUTE_UNUSED(thread_count);

#if defined(ENABLE_FP32_KERNELS)
    if(this->_run_method == &add_fp32_neon)
    {
        size_t mws = ICPPKernel::default_mws;
        if(platform.get_cpu_model() == CPUModel::N1)
        {
            mws = default_mws_N1_fp32_neon;
        }
        else if(platform.get_cpu_model() == CPUModel::V1)
        {
            mws = default_mws_V1_fp32_neon;
        }
        else
        {
            return ICPPKernel::default_mws;
        }

        // tensor is 1D or was re-interpreted as 1D
        if(this->window().shape().num_dimensions() == 1)
        {
            return mws;
        }
        else
        {
            // scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one
            // that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small
            // but the other sizes are large, which boosts performance.
            mws = static_cast<size_t>(mws / (this->window().num_iterations_total() / this->window().num_iterations(1)));
            return std::max(static_cast<size_t>(1), mws);
        }
    }
#else /* ENABLE_FP32_KERNELS */
    ARM_COMPUTE_UNUSED(platform);
#endif /* ENABLE_FP32_KERNELS */
    return ICPPKernel::default_mws;
}

} // namespace kernels
} // namespace cpu
} // namespace arm_compute