Lines Matching refs:iu
239 Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero);
240 void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241 void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242 …void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHo…
243 …void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseh…
305 Index iu = m_matT.cols() - 1; in computeFromHessenberg() local
317 while (iu >= 0) in computeFromHessenberg()
319 Index il = findSmallSubdiagEntry(iu,considerAsZero); in computeFromHessenberg()
322 if (il == iu) // One root found in computeFromHessenberg()
324 m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; in computeFromHessenberg()
325 if (iu > 0) in computeFromHessenberg()
326 m_matT.coeffRef(iu, iu-1) = Scalar(0); in computeFromHessenberg()
327 iu--; in computeFromHessenberg()
330 else if (il == iu-1) // Two roots found in computeFromHessenberg()
332 splitOffTwoRows(iu, computeU, exshift); in computeFromHessenberg()
333 iu -= 2; in computeFromHessenberg()
340 computeShift(iu, iter, exshift, shiftInfo); in computeFromHessenberg()
345 initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); in computeFromHessenberg()
346 performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); in computeFromHessenberg()
376 inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero) in findSmallSubdiagEntry() argument
379 Index res = iu; in findSmallSubdiagEntry()
395 inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) in splitOffTwoRows() argument
403 Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); in splitOffTwoRows()
404 …Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4 in splitOffTwoRows()
405 m_matT.coeffRef(iu,iu) += exshift; in splitOffTwoRows()
406 m_matT.coeffRef(iu-1,iu-1) += exshift; in splitOffTwoRows()
413 rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); in splitOffTwoRows()
415 rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); in splitOffTwoRows()
417 m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); in splitOffTwoRows()
418 m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); in splitOffTwoRows()
419 m_matT.coeffRef(iu, iu-1) = Scalar(0); in splitOffTwoRows()
421 m_matU.applyOnTheRight(iu-1, iu, rot); in splitOffTwoRows()
424 if (iu > 1) in splitOffTwoRows()
425 m_matT.coeffRef(iu-1, iu-2) = Scalar(0); in splitOffTwoRows()
430 inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& sh… in computeShift() argument
434 shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); in computeShift()
435 shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); in computeShift()
436 shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); in computeShift()
442 for (Index i = 0; i <= iu; ++i) in computeShift()
444 Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2)); in computeShift()
463 for (Index i = 0; i <= iu; ++i) in computeShift()
472 inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo,… in initFrancisQRStep() argument
477 for (im = iu-2; im >= il; --im) in initFrancisQRStep()
497 inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU… in performFrancisQRStep() argument
500 eigen_assert(im <= iu-2); in performFrancisQRStep()
504 for (Index k = im; k <= iu-2; ++k) in performFrancisQRStep()
527 m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
533 Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2); in performFrancisQRStep()
540 m_matT.coeffRef(iu-1, iu-2) = beta; in performFrancisQRStep()
541 m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); in performFrancisQRStep()
542 m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
544 m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); in performFrancisQRStep()
548 for (Index i = im+2; i <= iu; ++i) in performFrancisQRStep()